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ABSTRACT 
This work presents a numerical investigation 

targeting to simulate the aircraft cabin as an 

environmental chamber and assist in the design of a 

test rig assimilating passenger comfort, when 

exposed to odor effects and high Volatile Organic 

Compound concentrations. The mixing and 

transport of chemical species is evaluated using 

Computational Fluid Dynamics for 800 sec of in-

cabin actual flow time and odor measurements are 

taken every 10 sec, in proximity to passengers’ 

noses. The measurement results are used to create a 

dataset that trains four different machine learning 

classifiers, i.e., Random Forest, Support Vector 

Machine, Logistic Regression, and Naive Bayes, 

and their performance is compared. Additionally, a 

simulation using a cabin filtering system is 

conducted, to evaluate the impact of the molecular 

weight of the compounds to the residence time 

variation. Results indicate that the model is 

insensitive to inlet air mass flow variation, meaning 

that the impact of the air-conditioning system setting 

is minor. Moreover, the measurement results are 

used in a Boruta feature selection algorithm, to 

determine their importance and form a dataset that 

will train the machine learning classifiers. The Naive 

Bayes method outperforms the rest with an accuracy 

rate of 96 %; thus, it is being selected for the 

creation of a digital nose model. Furthermore, the 

comparison between the simulation using the 

filtering system and the baseline, that has no filtering 

system, indicates that the Residence Time is 

independent of the molecular weight of each 

compound, as they all show equivalent percentile 

reduction in their times. Finally, in-cabin flow 

irregularities are present, disrupting the flow 

symmetry and suggesting that not all passengers 

share the same traveling experience. This dictates 

the need to manufacture a full-scale test rig to 

quantify the impact of the flow asymmetry to the 

comfort of frequent travelers and aviation 

professionals.  

NOMENCLATURE 
CAQ Cabin Air Quality 

CFD Computational Fluid Dynamics 

ECS Environment Control System 

HEPA High-Efficiency Particulate Air 

HVAC Heat Ventilation Air-Conditioning 

VOC Volatile Organic Compounds 

RT Residence Time 

 

INTRODUCTION 
Aviation medicine combines aspects of 

preventive and environmental medicine to improve 

the physiology and psychology of human in flight. 

Apart from the flight conditions, that may impact the 

passengers’ flight comfort, i.e., weather, turbulence 

etc., odor sense and smell dissipation play a 

significant role too. On one hand, passengers claim 

that eating experience during flight may be 

dissatisfactory. On the other hand, unwanted fumes 

may be introduced through the aircraft 

environmental control system, like the bleed air 

system, thus contributing to the cabin’s air 

contamination. In that direction monitoring Cabin 

Air Quality – CAQ is essential, to comply with 

health and safety standards and ensure the in-flight 

comfort of passengers and crew members. One of 

the main candidates put under the microscope are 

Volatile Organic Compounds – VOCs, that should 

be monitored and controlled efficiently, to maintain 

the CAQ (Yin et al., 2022). 

Odor sensors are neither simple nor inexpensive 

equipment. Despite that the concept of machine 

olfactory system goes back to 1961, it remains very 

complex, mainly focuses on gas detection, and 

consists of various compartments, such as the 

sampler, the computing system, the media -where 

the data is stored-, and the representer, that can 

reproduce the stored odors (Wen et al., 2018). On the 

contrary, there is limited research trying to 

understand the mechanisms that the human olfactory 

system detects and discriminates odors (Firestein, 
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2005), and scientists can’t yet clearly reach a 

consensus on whether there is a global methodology 

that can be applied on that matter.  

Initial studies were limited to a small number of 

flights (Fox, 2000), however, in the recent years, 

effort has been put to broaden the flight spectrum, 

include more flights, and create complete aircraft 

cabin models to assess CAQ (Spengler et al., 2012). 

In this direction, Gao et al., and Wang et al., led 

independent studies to model VOCs in detail (Wang 

et al., 2014), (Gao et al., 2015), whereas Schuchardt 

conducted measurements in 194 flights, focusing on 

the relation between VOCs and odor experiences 

(Schuchardt et al., 2019).   The subject was 

broadened by Pei et al., and Yin et al., who 

performed comparative studies to identify common 

VOCs in aircraft cabins and household apartments 

and created databases of most commonly measured 

VOCs in both locations, with tetrachloroethylene, 

styrene and naphthalene being among the 

compounds with a detection rate of 70 % or greater 

(Pei et al., 2020), (Yin et al., 2021), (Yin et al., 

2022). 

A typical air-conditioning unit in civil aviation 

uses recirculated air, 50 % of which is bleed air from 

the gas turbines -the main source of VOCs- that is 

cooled by the Environmental Control System – ECS, 

prior to entering the cabin, and the rest is recycled 

and filtered through the aircraft filtering unit (Hunt 

et al., 1995). Moreover, according to the inlet and 

outlet positioning inside the cabin, the ventilation 

system can be divided into three variants, namely the 

under-floor displacement ventilation, the mixing 

ventilation, and the personalized ventilation (Farag 

and Khalil, 2015). For the under-floor displacement 

ventilation, cooled air enters the cabin through the 

floor vents, creating an iso-surface of cold air that 

interacts with body heat and creates an upward 

stream that exits through the outlet vents located at 

the cabin ceiling. In this type of ventilation, air 

contaminants are concentrated close to the outlet 

vents, that are far from passengers’ nasal area. 

Aircraft manufacturers gain interest in this 

ventilation system, as it preserves Cabin Air Quality 

with lower air inlet velocity, compared to other 

ventilation variants (Maier et al., 2017). Considering 

the mixing ventilation, that is the most common type 

in aviation, high-velocity inlets are located on the 

cabin ceiling, both above and beneath the storage 

compartments, that allows for inlet air to mix and 

remove contaminants prior to reaching the 

passengers. Then, the mixed air exits through the 

outlet vents located close to the cabin floor. 

However, this system enables the spread of 

contaminants from one passenger to another, as the 

air mixing occurs closer to the passengers’ heads, 

compared to the under-floor system. Finally, the 

personalized ventilation provides fresh air directly 

to each passenger via individual jets located above 

the passenger headroom, that creates a curtain of 

decontaminated air around each passenger. 

However, due to the high jet velocity, the passenger 

thermal comfort is often compromised after several 

minutes of exposure. 

Aircraft Environment Control System – ECS is 

used to provide clean air during flight to maintain a 

healthy environment for passengers and aviation 

professionals. It consists of ventilation, pressure 

regulation, contamination dissipation control, and 

flow regulation control systems, that determine air 

distribution and recirculation. The operation of ECS 

is dictated by both American and European Aviation 

Associations and it is supplemented by the American 

Society of Heating, Refrigerating, and Air 

Conditioning – ASHRAE, dictating bounds for 

acceptable operating conditions that preserve the 

high standards of passenger comfort. For example, 

the air inlet velocity should be between 0.1 and 0.4 

m/s to ensure high levels of passenger comfort 

(ASHRAE, 2003). In order to properly filter the 

recycled air that passes though the ECS, High-

Efficiency Particulate Air – HEPA filters are 

commonly used to remove airborne pathogens, that 

remove 99.97 % of particles with diameter up to 0.3 

μm, including particles exhaled from the human 

respiratory system. Maintaining the recirculated air 

quality is of utmost importance, since it is used to 

regulate in-cabin pressure, temperature, and 

humidity conditions (Zee et al., 2021). 

In short, air quality evaluation and monitoring 

inside the aircraft cabin is a pre-requisite, to provide 

a comfortable and healthy in-flight experience, both 

for passengers and aviation professionals. In this 

direction, odor sensors must be distributed inside the 

cabin to provide local measurements giving 

feedback to the ECS to maintain the in-cabin air 

quality. In the work of Zhang et al., (Zhang et al., 

2007), a computational model is set, considering a 

slice of a large Boeing 767-300 cabin, aiming to 

optimize the location and determine the minimum 

number of sensors required to monitor the CAQ. 

However, the question of how the olfactory system 

receives the odor signal remains unanswered, 

especially in smaller aircraft cabins, where odor 

dissipation gets more intense due to the confined 

space. Therefore, the scope of this work is to 

simulate the air-condition flow in a small aircraft 

cabin, and to monitor the effect of variation of 

cooled air mass-flow and VOC concentrations on 

the overall VOC residence time inside the cabin, 

using measuring sensors located in proximity to the 

passengers’ nasal area. Then, the computational data 

is used to train four different machine learning 

classifiers and compare their performance, with aim 

to create a digital nose model. That model will 

predict the fractions of various in-cabin compounds, 

like the VOCs, and define the limits beyond which, 

the concentration of each compound becomes 

effective for the passengers. Moreover, a direct 

comparison of two air-conditioning systems; one 
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with and one without a filtering system is performed, 

to determine the impact of the mass fraction of 

VOCs on the overall Residence Time – R. T., inside 

the cabin. Finally, the feasibility of manufacturing a 

full-scale test rig for odor testing is discussed. 

 

METHODOLOGY 
The aircraft considered in this study is a hybrid-

electric commuter aircraft with a maximum payload 

capacity of 19 passengers that is sized using in-

house tools tailored for novel propulsive 

architectures (Gkoutzamanis et al., 2021), (Nasoulis 

et al., 2022). The cabin selected for this 

configuration is a single-aisle cabin, with single 

seats per side, the characteristics of which are shown 

in Table 1. 

Table 1 Test case cabin dimensions 

No of rows 9 - 

Seat pitch 0.77 m 

Seat length 0.5 m 

Seat width 0.5 m 

Aisle width 0.6 m 

Cabin length 6.93 m 

Cabin height 1.8 m 

Cabin width 1.95 m 

 

Part of this work aims to understand the 

evolution of the flow inside the cabin and capture the 

mass transfer phenomena of VOCs caused by the 

operation of the aircraft air-conditioning system. 

Therefore, a CFD computational domain is 

prepared, that will be used in a transient Heat 

Ventilation Air-Conditioning – HVAC analysis 

inside the aircraft cabin. To reduce the size of the 

computational domain, a cabin slice of 2m is 

selected, including a single row of seats and two 

manikins -one on each side-. The topology of the 

cabin slice is shown in Figure 1. Each manikin is 

positioned to a seat and a standard siting position is 

assumed. The outlets of the air-conditioning system 

are attached to the fuselage side wall, next to the 

seats and close to each passenger’s feet, whereas the 

inlets are above the cabin storage compartments. 

The size of the inlet and outlet grills are selected to 

be similar to aircraft of the same class and the final 

dimensions are shown in Table 2. Finally, a sensor is 

attached to each manikin’s nose, to detect particle 

concentrations. 

 

Table 2 Air-Conditioning grills dimensions 

Name Length Width 

Inlet vents 0.75 m 0.045 m 

Outlet vents 0.5 m 0.09 m 

 

The domain is discretized by a polyhedral mesh, 

with polyhedral layers on all walls. Different grid 

sizes are tested, ranging from 1.4 mi. elements to 6.7 

mi. elements and for a grid size of approximately 4.2 

mi. elements, the solution is considered sufficiently 

accurate at an acceptable computational cost. To 

compare the different grids, an auxiliary cut plane is 

created, that is normal to the z-axis, at the sensors’ 

height.  As it can be seen in Table 3, the average 

plane velocity difference between the 4.2 and 6.7 mi. 

elements grid sizes is approximately 1 %, therefore 

the solution is considered grid independent. 

Numerous other parameters tested, showed the same 

trends, thus the 4.2 mi. elements grid size is selected 

for the evaluation. 

 

 
Figure 1 Manikin position and cabin air-

conditioning system 

Table 3 Average plane velocity versus grid size 

Grid size 

[elements] 

Average plane 

velocity [m/s] 

Difference 

[%] 

1,412,649 0.0208 5.66 % 

4,261,596 0.0199 1.01 % 

6,767,836 0.0197 - 

 

The computational domain is solved in Ansys 

Fluent commercial solver. The Reynolds-Averaged 

Navier-Stokes - RANS equations are solved with the 

k-omega SST turbulence model. Additionally, the 

energy equation is enabled, as well as the species 

solver for the mass transfer of VOCs. The inlets of 

the model are specified as mass flow inlets, whereas 

the outlets are set as outflows, in order to calculate 

the species concentrations on the outlet plane. The 

inlet mass flow is calculated to be 0.01 kg/sec 

according to ASHRAE recommendation and inlet 

vent dimensions for inlet velocity of 0.25 m/s, while 

the inlet temperature from the air-conditioning 

system is 291 K. As mentioned in the introduction, 

the Volatile Organic Compounds that are used in this 

model are tetrachloroethylene (C2Cl4), naphthalene 

(C10H8), and styrene (C8H8), since they are among 

the highly detected compounds in a cabin. 

Additionally, VOCs from essential oils are also 

considered, like Limonene (C10H16) that is the major 

component in the oil of citrus peels. Moreover, 

Linalool (C10H18O), and Citral (C10H16O), are 

included, commonly found in flowers and spice 

plants and oils of several plants like lemon myrtle 

respectively, to explore the impact of food-related 



XXVI Biennial Symposium on Measuring Techniques in Turbomachinery 
Transonic and Supersonic Flow in Cascades and Turbomachines 

 

4  Pisa, Italy 

 28 – 30 September 2022 

odors in the passenger’s eating experience. The 

approximation of the VOCs mass fractions along 

with air mass fractions are included in Table 4. 

Finally, the initial pressure of the cabin is set to 75 

kPa. 

A transient analysis with a variable time step, 

ranging from 10-4 to 10-2 sec, is solved, while the 

actual flow simulation time is 800 sec; the time 

needed to renew the air inside the cabin slice 

completely. Subsequently, the mass of the VOCs and 

air compounds detected by the model’s sensors is 

used to create a dataset that will train a digital nose 

model. Mass measurements for each VOC are 

exported every 10 sec of actual flow time and stored  

Table 4 Volatile Organic Compounds and cabin 

air mass fractions 

Compound Mass Fraction 

Oxygen (O2) 0.17 

Nitrogen (N2) 0.83 

Tetrachloroethylene (C2Cl4) 4.8 ∙ 10−6 

Styrene (C8H8) 2.71 ∙ 10−6 

Naphthalene (C10H8) 2.12 ∙ 10−6 

Limonene (C10H16) 3.13 ∙ 10−6 

Linalool (C10H18O) 3.54 ∙ 10−6 

Citral (C10H16O) 3.5 ∙ 10−6 

 

in the dataset, along with the respective mass 

fractions and partial pressures, adding up to 22 

columns of data per writing interval. Additionally, 

an odor sensing threshold is set to be of the order of 

micrograms, meaning that if the mass of any VOC is 

less than 1 μg, it is assumed undetected, an 

assumption that is based on applications of 

Electronic Olfaction Systems (Campagnoli et al, 

2013). Finally, a feature selection Boruta based 

algorithm, (Kursa and Rudnicki, 2010), is used in 

the dataset to determine which dataset attributes i.e., 

masses, mass fractions and partial pressures, are 

more significant than others. Finally, the dataset is 

used to train the machine learning-assisted digital 

nose model, where four different classifiers are 

tested, namely the Random Forest, Support Vector 

Machine, Logistic Regression, and Naive Bayes, 

and their performance is compared. The Random 

Forest method uses feature randomness when 

building individual trees to create an uncorrelated 

forest whose prediction by committee is more 

accurate than of any individual tree. Moreover, the 

trees are trained on different sets of data and use 

different features to make decisions. For this study, 

various number of trees were tested and an overall 

number of 200 trees was selected. Considering the 

Logistic Regression, it is a statistical method for 

analyzing a dataset where there are independent 

variables that define an outcome. This method is 

selected as it is easy to implement, interpret and very 

efficient to train, whereas it performs well when the 

dataset is linearly separable. Finally, the Naive 

Bayes method is used, that is based on the Bayes 

Theorem for probabilities, as it is easy to implement 

and fast to predict. 

Lastly, the cabin filtering system is modeled 

through proper boundary conditions. It is assumed 

that 50 % of the incoming air is from outside and 

contains the VOCs, whereas the other 50 % passes 

through the cabin filtering unit. The filtration of the 

VOCs leads to an overall reduction of their in-cabin 

mass by 50 %, after a full filtration cycle. One full 

cycle occurs every 180 sec and the Residence Time 

of each VOC is monitored until the end of the 

filtration, with a 10 sec reporting interval.  

RESULTS AND DISCUSSION 
Prior to exploring the results, it is essential to 

perform a sensitivity analysis to the model input 

parameters to determine possible correlations 

between them. Therefore, each VOC mass fraction 

is altered by ±10%, and the model is re-evaluated, 

this time in steady state, to capture any VOC 

concentration variations in the sensor positions. The 

same ±10% variation is applied in the mass flow 

inlet, to quantify the impact of air-conditioning inlet 

air mass flow to the in-cabin mass transfer 

phenomena. 

A selection of the sensitivity analysis results is 

presented in Table 5, namely the variation analysis 

for the mass flow inlet and the variation for the mass 

fraction for one of the six VOCs that are present in 

the model. Regarding the inlet mass flow variation, 

it is observed that the concentration of VOCs that is 

measured by the sensors remains unaffected, 

compared to the reference case of 0.01 kg/s of inlet 

air mass flow. The measured difference between the 

reference value and the ±10% mass flow variation 

cases is less than 0.1 % for all 6 VOCs, meaning that 

the measurements are independent of the air-

conditioning system fan speed setting. Moreover, 

the measurements for Limonene are also presented 

in Table 5. The mass fraction of Limonene at the air-

conditioning inlet is altered by ± 10 %, compared to 

the reference case, that is shown in Table 4, and 

measurements are taken by the sensors close to the 

manikins. It is observed that the measurements of 

the other 5 VOCs remain unaffected by the variation, 

with the difference between them being less than 

1 %, for all compounds. Additionally, it is observed 

that for a 10 % reduction of the mass fraction at the 

inlet, the sensor measures 7.41 % less Limonene 

mass, compared to the reference. The exact opposite 

measurement is taken for the 10 % increase of the 

inlet mass fraction. The same analysis performed for 

the rest of the VOCs, namely, Tetrachloroethylene, 

Styrene, Naphthalene, Linalool, and Citral, and the 

same trends are observed. 

Having concluded the sensitivity analysis of the 

model to the input parameters, the feature selection-

based Boruta algorithm is used, to determine the 

most important variables of the time-transient model 
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Table 5 Input parameters sensitivity analysis for the cabin model  

    
C2Cl4 mass 

[mg] 

C10H18O mass 

[mg] 

C10H16O mass 

[mg] 

C10H16 mass 

[mg] 

C10H8 mass 

[mg] 

C8H8 mass 

[mg] 

M
a

ss
 

-10% 
4.679  

(+0.086 %) 
1.898  

(+0.053 %) 
3.324  

(-0.06 %) 
2.669  

(-0.037 %) 
1.998  

(-0.05 %) 
2.299  

(-0.043%) 

Ref. 4.675 1.897 3.326 2.7 1.999 2.3 

10% 
4.677  

(+0.043 %) 
1.898  

(+0.053 %) 
3.328  

(+0.06 %) 
2.702  

(+0.074 %) 
2  

(+0.05 %) 
2.302  

(0.087 %) 

L
im

o
n

en
e -10% 

4.66  

(-0.32%) 

1.88  

(-0.9%) 

3.31  

(-0.48%) 

2.5  

(-7.41%) 

1.998  

(+0.45 %) 

2.29  

(-0.43%) 

Ref. 4.675 1.897 3.326 2.7 1.989 2.3 

10% 
4.699  

(+0.51%) 

1.915  

(+0.95%) 

3.34  

(+0.42%) 

2.9  

(+7.41%) 

2  

(+0.55%) 

2.31  

(+0.43%) 

 

that affect odor detection. The dataset is copied and 

the rows in each column are shuffled. These values 

are called shadow features (Shadow Min, Mean, and 

Max colored in blue in Figure 2) and are used by the 

algorithm to decide the importance of each variable. 

In addition, the red and green bars are the features  

 
Figure 2 Importance of each variable according to 

the Boruta feature selection algorithm 

Table 6 Cross-reference of horizontal abscissa of 

Figure 2  

Symbol Name Symbol Name 

a 
Shadow 

Min 

m 
𝑁2 R 

b Pressure R n 𝐶10𝐻16𝑂 L 

c 
Shadow 

mean 

o 
𝐶10𝐻16𝑂 R 

d Pressure L p Time 

e 
Shadow 

Max 

q 
𝑂2 L 

f 𝐶2𝐶𝑙4 R r 𝑚𝑎𝑖𝑟  R 

g 𝑂2 R s 𝑚𝑎𝑖𝑟  L 

h 𝐶10𝐻18𝑂 L t 𝐶10𝐻16 R 

i 𝐶10𝐻18𝑂 R u 𝐶8𝐻8 L 

j 𝐶10𝐻16 L v 𝐶10𝐻8 R 

k 𝑁2 L w 𝐶8𝐻8 R 

l 𝐶2𝐶𝑙4 L x 𝐶10𝐻8 L 

 
that are rejected as less important and accepted as 

important respectively (Szul et al., 2021). In 

addition, the Residence Time is calculated, 

according to Eq. 1 and Eq. 2, where 𝑚𝑉𝑂𝐶,𝑖 is the 

mass of each VOC at the mass flow inlet, 𝜓 is the 

mass fraction of each VOC, and �̇�𝑜𝑢𝑡 is the total 

mass flow at the outlet. The cross-references of the 

horizontal abscissa on Figure 2 is shown on Table 6. 

The result of the Boruta evaluation is shown in 

Figure 2, where the variables are sorted from the 

least important (left) to the most important (right). It 

is observed that the mass of all compounds and the 

actual flow time show equivalent importance, 

according to the algorithm’s criteria, whereas the 

pressure difference measurements are classified as 

not important. Furthermore, since the in-cabin flow 

is not symmetric in the XZ plane, there are 

differences in the measurements of the two sensors, 

that affect the characterization of the importance of 

each variable. In other words, it is suggested that not 

all passengers share the same odor experience 

during flight, due to in-cabin flow irregularities. 

Finally, the variables that stand out, according to the 

Boruta selection algorithm, namely, the Styrene and 

Naphthalene mass on both sides, and the total in-

cabin air mass on the right side, are summarized in 

Table 7, along with their mean importance. 

 

𝜓 =
𝑚𝑉𝑂𝐶,𝑖

∑ 𝑚𝑉𝑂𝐶,𝑖
𝑛
𝑖=0

 Eq. 1 

𝑅. 𝑇. =
𝜓

�̇�𝑜𝑢𝑡

 Eq. 2 

 
Table 7 Boruta algorithm feature selection synopsis  

Name Mean Importance 

𝑚𝐶10𝐻8
 L 3.479 

𝑚𝐶10𝐻8
 R 3.477 

𝑚𝐶8𝐻8
 L 3.470 

𝑚𝑎𝑖𝑟  𝑅 3.463 

𝑚𝐶8𝐻8
 R 3.454 

 
The created dataset derived from the Boruta 

feature selection algorithm is used as an input by 

four different machine learning classifiers. The first 

evaluation is performed using the Random Forest 

classifier with 200 trees, that appears to have the best 

performance of the four, as shown in Table 8.  
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Figure 3 Cabin air quality monitoring with and without filtering system for Naphthalene and Styrene compounds

Table 8 Performance assessment of four machine learning classifiers  

Random Forest / Support 

Vector Machine 
Logistic Regression Naive Bayes 

Confusion Matrix Confusion Matrix Confusion Matrix 

Prediction False True Prediction False True Prediction False True 

False 27 0 False 16 1 False 25 2 

True 0 23 True 2 14 True 0 23 

Statistics Statistics Statistics 

Accuracy 100 % Accuracy 90.9 % Accuracy 96.0 % 

Sensitivity 1.00 Sensitivity 0.89 Sensitivity 1.00 

Specificity 1.00 Specificity 0.93 Specificity 0.92 

Considering the confusion matrix there are no 

mispredictions in the data, whereas the sensitivity 

and the specificity of the model are equal to 1. 

Additionally, the performance accuracy of the 

algorithm is 100 %. Then, the Support Vector 

Machine algorithm is tested, aiming to optimize a 

cost objective function, based on prediction 

accuracy, showing performance metrics matching 

those of the Random Forest. Moving on to the 

Logistic Regression method, it has the worst 

performance, with an accuracy of 90.9 %, a 

sensitivity of 0.89, and a specificity of 0.93. The 

model seems to detect odors in cases where it 

shouldn’t, as some False signals are interpreted as 

True, according to the confusion matrix. In addition, 

some odors are not detected during the training, as 

some True signals are interpreted as False. Finally, 

the Naive Bayes classifier has the second-best 

prediction performance, with an accuracy of 96 %, 

a sensitivity of 1, and a specificity of 0.92. Again, 

this method also detects odors in cases where it 

shouldn’t, according to the confusion matrix in 

Table 8. From the classifiers’ comparison, the 

Random Forest and the Support Vector Machine 

methods show superior performance compared to 

the rest. However, since Boruta is a feature ranking 

and selection algorithm based on Random Forest, 

the results may be biased. This can be supported by 

the fact that the methods have 100 % accuracy and 

make no mistakes during the training phase. For this 

reason, the second-best candidate will be selected to 

for the digital nose model, namely the Naive Bayes, 

with 96 % accuracy. 

The previous analysis concerns a typical air-

conditioning unit, without an additional air filtering 

treatment. However, it is common practice to use 

novel filtering systems to clear the air inside the 

cabin, as mentioned in the introduction. These filters 

have a high filtration effectiveness and maintain the 

Cabin Air Quality within acceptable limits, as 

defined by health standards. Therefore, a second 

study is performed to capture the impact of the filters 

on the in-cabin air quality and assess the effect of the 

molecular weight of VOCs on their residence time. 

These filters are applied to the air-conditioning 

system, where 50 % of the incoming air is from the 

outside, including VOCs, whereas the rest 50 % is 

being recycled air that passes through the filter. The 

air filtration and mixing of the system occurs every 

3 minutes and the residence time is calculated for a 

full filtration cycle. The difference between the 

residence time for the case with and without the 

filter, for Naphthalene and Styrene, is shown in 

Figure 3. It is observed that for the filter case, the 
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residence time is reduced, compared to the no-filter 

case. Moreover, this difference increases with the 

transient flow progress, starting from 3.14 % and 

3.08 % to 28.45 % and 28.3 % for the Naphthalene 

and Styrene respectively, for the 190 and 360 sec of 

flow time correspondingly. Furthermore, the slope 

of the residence time as function of the simulation 

time is reduced compared to the no-filter case. The 

same measurements are performed for the other 

VOCs and similar trends are observed. Finally, the 

evaluation of residence time for all VOCs indicates 

that it is independent of the molecular weight of the 

compounds since they all show equivalent percentile 

reduction. 

Considering the flow irregularities that disrupt 

the in-cabin flow symmetry, the next step towards 

quantifying the magnitude of the asymmetry is to 

manufacture a full-scale test rig and recreate the 

experiment in real conditions, instead of simulation. 

However, the cost of equipment and construction of 

the rig should be considered. Since the cabin is small 

(Table 1), as it is derived from the commuter aircraft 

class, there is greater potential for construction as 

the production cost is significantly lower, and the 

room requirements are smaller. The preliminary 

assessment of the cabin slice simulation results 

indicates that a cabin slice of 3 rows (approximately 

2.5 m in length), is adequate to capture the in-cabin 

flow field and overall passenger odor experience, at 

a low production cost. Towards this direction, a 

small-scale Environmental Control System is 

required, in terms of equipment, able to monitor and 

maintain in-cabin conditions, so they are in harmony 

with the actual cabin environment during flight. 

Moreover, the system must be versatile, to recreate 

all possible pressure and temperature conditions, 

throughout a typical flight mission. Also, an odor 

controlling system must be introduced, able to create 

and dissipate multiple types of ingested odors 

through the ventilation system. Besides, the odor 

sensors will be positioned appropriately in 

proximity to the passengers’ noses, to capture odors 

in a similar way to the human olfactory system. 

Furthermore, a few odor sources will be scattered in 

the test rig seats, to account for the passengers’ 

inhale and exhale function, and assess the breathing 

impact of others to the odor experience of an 

individual.  Additionally, test campaigns will be set 

up including questionaries, to evaluate different 

individuals exposed to different scents, to assess the 

robustness of human odor perception. In conclusion, 

these are some of the major challenges to be 

addressed during the design and manufacturing of a 

full-scale test rig to assess the in-flight passenger 

odor experience. 

CONCLUSIONS 
A Computational Fluid Dynamics - CFD cabin 

slice simulation for a commuter aircraft was 

performed, to investigate the impact of odor effects 

and high Volatile Organic Compounds – VOCs 

concentrations on passenger comfort. A grid 

independent transient flow simulation of 800 sec of 

actual flow time was solved, to obtain real-time 

measurements of odors, using sensors located at the 

passengers’ noses. Additionally, variation analyses 

were performed to determine the model sensitivity 

to changes in the input parameters. The air inlet mass 

flow of the air-conditioning system and the mass of 

the VOCs at the inlet were varied by ± 10 % of their 

nominal value, and the model was proven to be 

insensitive to the inlet mass flow variation. Also, the 

variation of mass of a certain VOC did not affect the 

measurements of the others during the simulation. 

Subsequently, the measurements from the 800 sec of 

real flow time were evaluated using a Boruta feature 

selection algorithm, to determine the importance of 

each measurement, and select those that were used 

to train the machine learning classifiers. Four 

classifiers were considered, namely, the Random 

Forest, Support Vector Machine, Logistic 

Regression and Naive Bayes, and their performance 

was compared, with the Naive Bayes having a 

prediction accuracy of 96 %, that was eventually 

selected for the digital nose model. Furthermore, the 

addition of cabin filters was considered, to compare 

two different air-conditioning systems, one with the 

filters and one without, and determine the impact of 

the molecular weight of VOCs to their respective in-

cabin Residence Time. It was observed that the 

Residence Time is independent of the molecular 

weight, as all 6 VOCs showed almost equal 

reduction in Residence Time, compared to the no-

filter case. Finally, the simulated flow showed 

irregularities that disrupted the symmetry of the 

field, suggesting the possibility that passengers 

share different in-cabin odor experiences, thus 

mandating the construction of a full-scale cabin test 

rig, consisting of at least three seat rows. 
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