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ABSTRACT 
Two-wire thermocouples are often used for 

temperature measurements. Under transient 

conditions, measurement errors can occur due to 

capacitive inertia and heat conduction along the 

stem of the thermocouples. The present study 

presents a correction of these thermocouple 

measurement errors caused by transient inertia and 

conductive effects using a simplified analytical 

approach and its numerical solution. Based on an 

energy balance the mathematical modelling is 

derived and analytically solved for specific 

boundary conditions. Further, numerical solutions 

have been implemented with different model 

complexities. Thereby the models show the 

significance of the necessary correction as well as 

the good agreement with theoretical considerations. 

A corresponding experimental validation is given 

in Part II. 

NOMENCLATURE 

𝐴 m2 area 

Ar - aspect ratio 

Bi - Biot number 

𝑐 J kg-1 K-1 specific heat capacity 

𝐷 m diameter 

ℎ W m-2 K-1 heat transfer coefficient 

𝑘 W m-1 K-1 thermal conductivity 

𝐿 m immersion length 

𝑚  index of eigenvalues 

𝑛  index of numerical time step 

𝑛⃗  - normal vector 

𝑁  amount of control volumes 

𝑝  constant 

Pr - Prandtl number 

𝑞 W m-2 specific heat flux 

Re - Reynolds number 

𝑡 s time 

𝑇 K temperature 

𝑢 m s-1 velocity 

𝑢 m s-1 bulk velocity 

𝑉 m3 volume 

𝑦 m spatial coordinate 

𝑦̃ - dimensionless coordinate 

  
 

Greek symbols 

𝛼 W m-2 K-1 contact coefficient 

𝛿 - time averaged error 

Θ - dimensionless temperature 

𝜆 - eigenvalues 

𝜈 m2 s-1 kinematic viscosity 

𝜌 kg m-3 density 

𝜏 - dimensionless time (Fourier 

number) 

Subscripts 

0  initial value 

ana  analytical 

c  cross-section 

cond  heat conduction 

conv  heat convection 

corr  corrected 

f  fluid 

ideal  ideal 

ref  reference 

st  stationary 

surf  thermocouple surface 

TC  thermocouple 

tr  transient 

vol  volumetric 

w  wall 

∞  ambient 

INTRODUCTION AND LITERATURE 
RESEARCH 

The measurement of the thermodynamic state 

variable “temperature” is an essential prerequisite 

for many evaluation methods in thermodynamics. 

For example, heat exchange processes are mainly 

driven by temperature gradients at the wall and 

approximated by driving temperature differences 

between wall and fluid. Especially in transient 

processes, the precise measurement of these two 

temperature curves is a challenging task with 

different requirements in each case. While surface 

temperature measurements, e.g. by infrared 

thermography or thin-film sensors, practically 

represent a perfect thermal coupling of the 

measuring technique to the temperature to be 
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measured, sensors in fluids are often difficult to 

integrate. In particular, the measured values of the 

widely used thermocouples can deviate 

significantly from the actual fluid temperature 

mainly due to two effects. First, due to thermal 

inertia, a thermocouple will always follow a 

transient temperature curve with a time delay. 

Second, due to temperature differences within the 

thermocouple, heat is conducted between the 

measuring tip and the rest of the thermocouple 

depending on its installation. The influence of both 

effects on the measurement data acquisition can be 

negligible or even lead to the measurement data 

being rendered completely useless. However, with 

the increasing necessity of measurements on small-

scale, metallic original components, such as those 

resulting from additive manufacturing [1], both 

effects are increasingly no longer negligible as it is 

no longer possible to apply measures to sufficiently 

suppress the effects. Thus, methods are needed to 

compensate for the measured temperature at the 

thermocouple and predict the true fluid temperature 

as visualized in Fig. 1. 

 

Fig. 1: Qualitative representation of inertia and 

conductive measurement errors 

To compensate for thermal inertia, generic 

models using empiric time constants to be 

determined are common [2–13]. Differences due to 

unsteady heat conduction are, however, much more 

difficult to model, so that analytical, numerical, and 

empirical approaches can be found in the 

literature [14–21]. Especially models which can 

describe both effects simultaneously have hardly 

been developed and discussed in the past [22, 23]. 

This shortcoming is to be addressed by this work in 

two parts. In part I, a simplified analytical approach 

and its numerical solution will be presented. A 

model, based on an energy balance, is set up for 

specific boundary conditions and solved 

analytically. More complex cases are numerically 

predicted. The models confirm the significance of 

the necessary corrections and the good agreement 

with theoretical considerations. In part II [24], the 

models are applied and validated experimentally. 

ANALYTICAL MODEL 

 

Fig. 2: Schematic setup of the investigated 

thermocouple 

A schematic setup of a two-wire thermocouple 

in a cross flow situation is depicted in Fig. 2. At the 

probe surface a convective heat transfer occurs 

causing a specific heat flux  

𝑞𝑐𝑜𝑛𝑣 = ℎ(𝑦)(𝑇f(𝑦, 𝑡) − 𝑇TC(𝑦, 𝑡)). This 

convective mechanism reduces the difference 

between local fluid temperature 𝑇𝐹(𝑦, 𝑡) and local 

temperature in the thermocouple stem 𝑇TC(𝑦, 𝑡). 
Consequently, a thermal coupling between the 

probe and its surrounding is created that enables 

precise measurements by recording the tip 

temperature  𝑇TC(𝑦 = 𝐿). However, real 

thermocouples feature tip temperatures 𝑇TC(𝑦 = 𝐿) 
that differ from the fluid temperature 𝑇F(𝑦 = 𝐿) 
due to two additional mechanisms. Firstly, in 

transient experiments the thermal inertia of the 

probe prevents the thermocouple to follow a 

change in fluid temperature immediately. Secondly, 

heat conduction 𝑞cond = −𝑘∇𝑇TC in the 

thermocouple stem occurs. This second effect 

arises both in stationary as well as in transient 

experiments. 

Modelling 
In the following section an analytical equation 

is derived, which describes the previously 

mentioned mechanisms of thermal inertia and heat 

conduction. For this purpose, small Biot numbers 

Bi𝐷 = (ℎ𝐷)/𝑘 ≪ 1 are presumed, which ensure an 

immediate temperature equalization within a cross-

section of the thermocouple. Consequently, a one-

dimensional modelling approach is justified. 

Moreover, some assumptions are made in advance 

to further simplify the problem: First of all, the 

thermocouple consists of a cylinder with a constant 

diameter 𝐷 that is made out of one single, 

homogeneous material with equivalent properties. 

Moreover, all material properties are constant and 

the flow velocity 𝑢(𝑦) is stationary. Finally, 

radiation is neglected. 
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Fig. 3: Infinitesimal segment of the thermocouple 

The energy balance for an infinitesimal 

segment of the thermocouple can be derived from 

Fig. 3 yielding 

 

∫ 𝜌𝑐
𝜕𝑇TC(𝑦, 𝑡)

𝜕𝑡
d𝑉

𝑉⏟            
thermal inertia

 

= ∫ 𝑘 𝛻𝑇TC(𝑦, 𝑡) ⋅ 𝑛⃗ d𝐴c𝐴c⏟              
conduction

   

+∫ ℎ(𝑦)(𝑇F(𝑦) − 𝑇TC(𝑦, 𝑡))d𝐴surf
𝐴surf⏟                      

convection

  . 

(1) 

Here, the variables 𝑐, 𝜌 and 𝑘 represent heat 

capacity, density and heat conductivity, 

respectively. These properties are considered to be 

constant. Due to the small Biot number 𝐵𝑖, the 

convective heat transfer in Eq. (1) can be modelled 

as volumetric heat source 

𝑞vol = 𝑞conv
d𝐴surf
d𝑉

=
4

𝐷
ℎ(𝑦)(𝑇F(𝑦) − 𝑇(𝑦, 𝑡))  . 

(2) 

Further, the surface integral of the heat conduction 

term in Eq. (1) is replaced by a volumetric integral 

using the Gaussian theorem. The energy balance 

then results in 

∫ [𝜌𝑐
𝜕𝑇TC(𝑦, 𝑡)

𝜕𝑡
− 𝛻 ⋅ (𝑘𝛻𝑇TC(𝑦, 𝑡))

𝑉

 

−
4

𝐷
ℎ(𝑦)(𝑇F(𝑦) − 𝑇TC(𝑦, 𝑡))]  d𝑉 = 0  .

   (3) 

Here, 𝑎 = 𝑘/(𝜌𝑐) represents the thermal 

diffusivity. Equation (3) must be satisfied for an 

arbitrary control volume, which is only possible in 

case of a vanishing integrand 

𝜕𝑇TC(𝑦, 𝑡)

𝜕𝑡
− 𝑎

𝜕2𝑇TC(𝑦, 𝑡)

𝜕𝑦2
 

−
4

𝜌𝑐𝐷
ℎ(𝑦)(𝑇F(𝑦) − 𝑇TC(𝑦, 𝑡)) = 0  . 

(4) 

The latter equation (4) is a linear, partial 

differential equation of second order. 

Closure of the Equation System 
The differential equation (4) contains the 

unknown heat transfer coefficient ℎ. This 

coefficient can be estimated by an appropriate 

Nusselt correlation for cylinders in cross-flow [25] 

Nu(𝑦) = 𝐶 Re𝐷
𝑚(𝑦) Prf

𝑛 (
Prf

Prf,surf
)

𝑝

  . (5) 

The index 𝑓 represents fluid values, which are 

determined based on an average temperature of the 

fluid and thermocouple. In the course of this work, 

only the fluid temperature is used for this purpose 

in order to simplify the problem. Furthermore, 

Prf,surf represents the Prandtl number of the fluid 

based on the temperature at the thermocouple 

surface. Moreover, the constants 𝐶, 𝑚 and 𝑛 are 

given in [25]. 

The local Reynolds number  

𝑅𝑒𝐷 = (𝑢(𝑦) 𝐷)/𝜈 in Eq. (5) depends on the local 

flow velocity 𝑢(𝑦) at the thermocouple stem. In 

general, any velocity distribution can be used for 

estimating the local Reynolds number. Under real 

measurement conditions, however, the exact 

distribution might be unknown. Therefore, a 

uniform velocity profile 𝑢(𝑦) = 𝑢 with its bulk 

velocity 𝑢 is assumed in order to keep the model 

simple. 

When further taking into account the definition 

of the Nusselt number 𝑁𝑢 = (ℎ𝐷)/𝜆f, the equation 

for the heat transfer coefficient ℎ yields 

ℎ = 𝐶
𝜆f
𝐷
 (
𝑢𝐷

𝜈
)

𝑚

Prf
𝑛 (

Prf
Prf,surf

)

𝑝

  . (6) 

This equation for ℎ is only valid for 

thermocouples with circular cross-section, which 

are installed in cross-flow situations. In general, the 

model is also applicable for non-circular cross-

sections and non-cross-flow situations if 

appropriate Nusselt correlations are available. 

Boundary conditions are necessary to close the 

equation system including the fluid temperature 

𝑇f(𝑦, 𝑡), the initial temperature of the thermocouple 

𝑇TC(𝑦, 𝑡 = 0) as well as boundary conditions for 

the thermocouple tip 𝑇𝑇𝐶(𝑦 = 𝐿, 𝑡) and at the wall 

𝑇TC(𝑦 = 0, 𝑡). These boundary conditions depend 

on the experimental setup and, thus, are case 

specific.  

Non-Dimensional Model 
In case of simple boundary conditions Eq. (4) 

can be solved analytically. For this purpose, an 

isothermal initial temperature 𝑇0(𝑦) = const. is 

assumed and an ideal jump in fluid temperature is 

enforced at 𝑡 = 0. The thermocouple tip is 

modelled with an adiabatic boundary condition 
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𝜕𝑇TC/𝜕𝑦|𝑦=𝐿 = 0 and the temperature at the wall is 

assumed to be isothermal with 

𝑇TC(𝑦 = 0) = 𝑇W = 𝑇0. Moreover, a constant heat 

transfer coefficient ℎ is considered that corresponds 

to a uniform velocity profile. 

Before solving Eq. (4), it can be transformed 

into a non-dimensional formulation using the 

following dimensionless variables: 

 temperature Θ =
𝑇TC−𝑇f

𝑇0−𝑇f
 

 time (Fourier number) 𝜏 =
𝑎𝑡

𝐿2
 

 coordinate  𝑦̃ =
𝑦

𝐿
 

 aspect ratio Ar =
𝐿

𝐷
 

 Biot number Bi𝐿 =
ℎ𝐿

𝑘
 

The non-dimensional equation then yields  

𝜕Θ(𝑦̃, 𝜏)

𝜕𝜏
−
𝜕2Θ(𝑦̃, 𝜏)

𝜕𝑦̃2
+ 4Bi𝐿Ar Θ(𝑦̃, 𝜏) = 0  (7) 

in case of constant material properties. The 

corresponding boundary conditions are 

Θ(𝑦̃, 𝜏 = 0) = 1  ,  (8) 

Θ(𝑦̃ = 0, 𝜏) = 1    and (9) 

𝜕Θ(𝑦̃, 𝜏)

𝜕𝑦̃
|
𝑦̃=1

= 0  . 
 

(10) 

The definition of the dimensionless 

temperature Θ achieves a homogeneous differential 

equation, while the boundary conditions given by 

Eqs. (8) and (9) become inhomogeneous. To 

address this problem, the solution will be split up 

into a stationary part Θst(𝑦̃), which satisfies the 

inhomogeneous boundary condition of Eq. (9), and 

a transient part Θtr(𝑦̃, 𝜏). Due to the linear 

character of Eq. (7), the solution can be 

superimposed from the stationary and the transient 

part of the solution as 

Θ(𝑦̃, 𝜏) = Θst(𝑦̃) + Θtr(𝑦̃, 𝜏)  . (11) 

The stationary solution Θ𝑠𝑡(𝑦̃) is not a function 

of time. Consequently, the partial differential  

Eq. (7) reduces to an ordinary one 

−
d2Θst(𝑦̃)

d𝑦̃2
+ 4Bi𝐿Ar Θ(𝑦̃) = 0 (12) 

with the general solution  

Θst(𝑦̃) = 𝑐1 sinh(𝑝𝑦̃) + 𝑐2 cosh(𝑝𝑦̃)  . (13) 

Here, 𝑝 = 2√Bi𝐿Ar represents a constant. When 

further taking into account the boundary conditions 

from Eqs. (9) and (10), the stationary solution 

yields 

Θst(𝑦̃) = − tanh(𝑝) sinh(𝑝𝑦̃)
+ cosh(𝑝𝑦̃)  . (14) 

The transient solution Θtr(𝑦̃, 𝜏) is predicted by 

introducing the separation approach  

Θtr(𝑦̃, 𝜏) = 𝐺(𝑦̃)𝐻(𝜏) into Eq. (7): 

1

𝐻(𝜏)

𝜕𝐻(𝜏)

𝜕𝜏
+ 4Bi𝐿Ar =

1

𝐺(𝑦̃)

𝜕2𝐺(𝑦̃)

𝜕𝑦̃2

= −𝑝2  . 
(15) 

The right and left hand side in Eq. (15) depend 

on a single but different variable and, thus, must 

equal a constant value. As a result, the partial 

differential equation is subdivided into two 

ordinary differential equations with the 

corresponding boundary conditions 

𝐺(𝑦̃)𝐻(𝜏 = 0) = 1 − Θst(𝑦̃) ,  (16) 

𝐺(𝑦̃ = 0) = 0    and (17) 

𝜕𝐺

𝜕𝑦̃
|
𝑦̃=1

= 0  . 
 

(18) 

The general solution for 𝐺(𝑦̃) is 

𝐺(𝑦̃) = 𝑐3 sin(𝜆tr𝑦̃) + 𝑐4 cos(𝜆tr𝑦̃)  . (19) 

When further considering the boundary conditions 

from Eq. (17) and (18), the specific solution yields 

𝐺𝑚(𝑦̃) = 𝑐4,𝑚 cos(𝜆tr,𝑚𝑦̃)  . (20) 

Here, 𝜆tr,𝑚 = (2𝑚 − 1)𝜋/2 contains an infinite 

amount of eigenvalues with 𝑚 = 1,2,3, … 

Moreover, the general solution for 𝐻𝑚(𝜏) is 

𝐻𝑚(𝜏) = 𝑐5,𝑚𝑒
−(𝑝2+𝜆tr,𝑚

2 )𝜏   . (21) 

Since these results for 𝐺𝑚(𝑦̃) and 𝐻𝑚(𝜏) are not 

able to satisfy the condition for the initial 

temperature in Eq. (16), the result is expanded into 

an infinite series in order to consider not only one 

but all eigenvalues 𝜆tr,𝑚: 

Θtr(𝑦̃, 𝜏) = ∑ 𝐺𝑚(𝑦̃)𝐻𝑚(𝜏)

∞

𝑚=1

  . (22) 

Then, the solution for the dimensionless 

temperature reads 
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Θ(𝑦̃, 𝜏) = Θst(𝑦̃) + Θtr(𝑦̃, 𝜏) 

= − tanh(𝑝 ) sinh(𝑝𝑦̃) + cosh(𝑝𝑦̃) 

= + ∑ 𝑎𝑚 sin(𝜆tr,𝑚 𝑦̃) 𝑒
−(𝑝2+𝜆tr,𝑚

2 )𝜏

∞

𝑚=1

  . 

(23) 

Finally, the remaining constant 𝑎𝑚 = 𝑐4,𝑚𝑐5,𝑚 can 

be derived from the initial condition in Eqs. (8) 

and (16) to 

𝑎𝑚 =
2𝑝2

𝜆tr,𝑚(𝜆tr,𝑚
2 + 𝑝2)

  . (24) 

DISCUSSION OF THE ANALYTICAL 
RESULTS 

The analytical solution given by Eq. (23) 

allows a deeper insight into the thermal processes 

of thermocouples. Therefore, the characteristic 

behavior of the results will be analyzed in the 

following section. 

For the considered boundary conditions, the 

solution depends on two main parameters. These 

are the constant 𝑝 = 2√Bi𝐿Ar, which contains the 

impact of heat conduction and convection, and the 

Fourier number 𝜏 = (𝑎𝑡)/𝐿2 representing the 

influence of time. In Fig. 4, an exemplary solution 

for the thermocouple tip temperature Θ(𝑦̃ = 1, 𝜏) is 

depicted over time for a value of 𝑝 = 2√2. These 

dimensionless values Θ(𝑦̃ = 1, 𝜏) illustrate the 

relative difference between measured temperatures 

and real fluid temperatures in experiments. 

Moreover, an ideal thermocouple is shown for 

comparison, which records the real fluid 

temperature.

 
Fig. 4: Analytical solution of the thermocouple tip 

temperature for 𝒑 = 𝟐√𝑩𝒊𝑳𝑨𝒓 = 𝟐√𝟐 

In Fig. 4 two major effects can be observed 

that are inertia and conductive stem effect. Firstly, 

the thermal inertia is caused by the transient part of 

the solution Θtr(𝑦̃, 𝜏), which delays the 

thermocouple’s reaction when a change in fluid 

temperature is imposed. Consequently, a significant 

deviation between tip temperature and real fluid 

temperature arises for small Fourier numbers 𝜏 
leading to high values of Θ(𝑦̃ = 1, 𝜏). For large 

Fourier numbers 𝜏, however, the inertia impact 

vanishes due to the exponential function in Eq. 

(23): 

lim
𝜏→∞

Θtr(𝑦̃ = 1, 𝜏) = 0  . (25) 

Secondly, the conductive stem effect can be 

observed in Fig. 4. This effect considers heat 

conduction and convection at the thermocouple 

stem leading to a deviation between the 

thermocouple tip temperature and the fluid 

temperature. The conductive stem effect is 

incorporated in the analytical solution in Eq. (23) 

via the constant 𝑝 = 2√Bi𝐿Ar. Consequently, this 

process not only affects the stationary part of the 

solution Θst(𝑦̃) but also the transient one Θtr(𝑦̃, 𝜏). 
As a result, the conductive stem effect does not 

vanish for large Fourier numbers 𝜏: 

lim
𝜏→∞

Θ(𝑦̃ = 1, 𝜏) = Θst(𝑦̃ = 1)  . (26) 

To conclude, the relative importance of inertia 

and conduction depend on the dimensionless 

parameters 𝑝 and 𝜏. For small values of 𝜏 inertia 

dominates whereas the conductive stem effect 

prevails for large values of 𝜏. 

In the introduction section, different modelling 

approaches for the inertia effect were introduced 

from literature. The most popular approach 

depends on an exponential function containing a 

single time constant, which describes the transient 

behavior of the thermocouple tip temperature. 

However, when additionally taking into account the 

conductive stem effect this modelling approach 

fails. The conduction effect, which is incorporated 

in 𝑝 = 2√Bi𝐿Ar, affects not only the stationary part 

of the solution Θst(𝑦̃) but also the transient one 

Θtr(𝑦̃, 𝜏). Consequently, the time dependency of 

𝐻𝑚(𝜏) in Eq. (21) requires an infinite amount of 

time constants 𝜆tr,𝑚
2  instead of a single constant. 

Therefore, a single time constant is not able to 

resolve the combined impact of inertia and 

conductive stem effect in thermocouples. Instead, 

the partial differential Eq. (7) must be solved. 

However, analytical solutions exist only for simple 

boundary conditions, which are not able to describe 

real measurement situations. Therefore, a 

numerical model is required that allows a wider 

range of boundary conditions. 

NUMERICAL MODEL 
To overcome the restrictions of the analytical 

solution, a numerical model was developed. For 

this purpose, a finite volume approach is derived 

that allows more suitable boundary conditions in 
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order to increase the model accuracy. Thus, 

arbitrary velocity distributions 𝑢(𝑦), time 

dependent fluid temperatures 𝑇f(𝑡) and more 

complex boundary conditions for the thermocouple 

stem at the wall are considered. Apart from that, the 

condition at the tip remains unchanged still using 

the assumption of an adiabatic surface. 

The boundary condition at the wall is modified 

by extending the thermocouple stem into the wall 

according to Fig. 5. Here, the conductive heat 

transfer between wall and thermocouple is 

modelled using a contact coefficient 𝛼w, which is 

assumed to be constant over time. Moreover, 

outside of the wall an adiabatic condition is 

prescribed. 

 

Fig. 5: Computational domain and boundary 

conditions 

The finite volume approach can be deduced 

based on the integral form in Eq. (1). For this 

purpose, the domain is divided into 𝑁 control 

volumes as shown in Fig. 5. Within each of these 

volumes the field variables exhibit constant values. 

Equation (1) is discretized using an implicit scheme 

in time of first order and a central difference 

scheme of second order for all spatial heat fluxes 

[26]. Then, the governing equation for each control 

volume 𝑖 yields  

𝜌𝑐
𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛

𝛥𝑡
𝐴c𝛥𝑦 

= 𝑘 
𝑇𝑖−1
𝑛+1 − 2𝑇𝑖

𝑛+1 + 𝑇𝑖+1
𝑛+1

𝛥𝑦
 𝐴c 

    + ℎ𝑖
𝑛+1 (𝑇ref,𝑖

𝑛+1 − 𝑇𝑖
𝑛+1) 𝐴surf  . 

(27) 

Depending on the 𝑦-coordinate within the 

stem, the heat transfer coefficient between the 

thermocouple and its surrounding changes. It can 

be either a convective exchange within the fluid at 

𝑦𝑖 ≥ 0 or a conductive exchange inside the wall at 

𝑦𝑖 < 0. Equation (26) combines both effects in a 

single equation by defining the variables ℎ𝑖 and 

𝑇ref,𝑖
𝑛  in as follows: 

     ℎ𝑖   = {
ℎf,𝑖       ∀ 𝑦𝑖 ≥  0

𝛼w      ∀ 𝑦𝑖 < 0
       

𝑇ref,𝑖
𝑛 = {

𝑇f,𝑖
𝑛       ∀ 𝑦𝑖 ≥  0

𝑇w,𝑖
𝑛       ∀ 𝑦𝑖 <  0

  . 

(28) 

Here, 𝑇w,𝑖
𝑛  denotes the local wall temperature that 

can be approximated by an arbitrary temperature 

distribution between the fluid temperature 𝑇𝑓 and 

the ambient temperature 𝑇∞. The model is 

implemented in MATLAB. 

Unfortunately, in the numerical model in  

Eqs. (26) and (27) several model parameters exist 

that are unknown for real thermocouples. These are 

the density 𝜌, heat capacity 𝑐, conductivity 𝑘 and 

contact coefficient 𝛼w. This issue of the unknown 

parameters will be addressed at the end of the 

paper. 

Validation 
Disregarding the unknown parameters, the 

numerical model can be validated by comparing its 

outcomes to the analytical solution given by 

Eq. (23). For this purpose, the thermocouple stem 

within the wall is omitted and the model 

parameters are defined such that they satisfy the 

non-dimensional parameter 𝑝 = 2√Bi𝐿Ar = 2√2. 

A uniform velocity profile is prescribed that causes 

a uniform heat transfer coefficient ℎ and, thus, a 

uniform Biot-number Bi𝐿 along the thermocouple 

stem. Furthermore, all boundary and initial 

conditions are defined in accordance with 

Eqs. (15) - (17) implying an isothermal initial 

temperature 𝑇TC(𝑦, 𝑡 = 0) and an ideal jump in 

fluid temperature 𝑇f. As a result, the 

implementation of the numerical model as well as 

its grid dependency can be validated. 

For comparison of analytical and numerical 

results a transformation is necessary since the 

analytical outcomes contain non-dimensional 

values whereas the numerical model predicts 

absolute values. Therefore, the numerical results 

are converted into non-dimensional temperatures 

Θnum. The validation is then conducted by 

averaging the error 𝛿 between analytical and 

numerical temperatures at the thermocouple tip 

over a time period of 𝑡 = 5 s (𝜏 = 64 ∙ 104): 

𝛿 =
1

𝑁
∑|Θana(𝑦̃ = 1, 𝜏

𝑛)

𝑁

𝑛=1

−            −Θnum(𝑦̃ = 1, 𝜏
𝑛)|  . 

(29) 

The error 𝛿 for different resolutions in time 

and space is illustrated in Fig. 6. The temporal 

resolution is depicted in absolute values Δ𝑡𝑖 since 

these values were prescribed for the numerical 
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model. The corresponding non-dimensional time 

steps Δ𝜏𝑖  are given in Tab. 1. 

 

Fig. 6: Summarized error for different resolutions in 

time and space for 𝒑 = 𝟐√𝑩𝒊𝑳𝑨𝒓 = 𝟐√𝟐 

Tab. 1: Absolute time steps 𝜟𝒕𝒊 and its corresponding 

non-dimensional values 𝜟𝝉𝒊 
 𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5 

𝛥𝑡𝑖  [𝑠] 0.001 0.005 0.01 0.05 0.1 

𝛥𝜏𝑖  [10
2] 1.24 6.2 12.4 62 124 

In general, the error in Fig. 6 shows small 

deviations between analytical and numerical 

results. The model is, thus, implemented properly. 

Furthermore, a resolution of 500 control volumes 

in combination with a time step of Δ𝑡 = 0.01 s is 

sufficient to reach accurate results with an error of 

𝛿 < 10−3. Hence, this resolution is used for 

subsequent numerical investigations. 

Fluid Temperature Correction 
In experiments, one intends to measure the real 

fluid temperature. However, thermocouples only 

measure its tip temperature 𝑇TC(𝑦 = 𝐿), which 

deviates from the real fluid temperature 𝑇f. 
Therefore, the subsequent section uses the above 

introduced numerical model in order to recompute 

the real fluid temperatures from the thermocouple 

tip temperatures. In the following, such an inverse 

calculation is also termed fluid temperature 

correction. 

Based on the discretized Eq. (26) a correction 

calculation is possible, if two requirements are 

satisfied: Firstly, the time dependent measurement 

data 𝑇TC(𝑦 = 𝐿, 𝑡) is required from experimental 

investigation. This measurement needs to start from 

thermal equilibrium. Secondly, the initial 

temperature of the thermocouple 𝑇TC(𝑦, 𝑡 = 0) and 

the model parameters need to be known. As a 

result, the unknown values in Eqs. (26) and (27) are 

the fluid temperatures of the actual and the 

preceding time steps 𝑇f
𝑛+1 and 𝑇f

𝑛 as well as the 

thermocouple temperatures 𝑇TC
𝑛 (𝑦 < 𝐿, 𝑡). Within 

the thermocouple only the tip temperature  

𝑇TC
𝑛 (𝑦 = 𝐿, 𝑡) is known from the experiments. The 

unknown temperatures can then be computed 

successively beginning at the first time step by 

taking into account the initial condition, which is 

the thermal equilibrium. 

The capability of such an inverse calculation 

can be demonstrated on the basis of the analytical 

solution from Eq. (23). For this purpose, the 

thermocouple stem within the wall is omitted as 

already mentioned for the validation. Moreover, the 

boundary and initial conditions are again defined 

such that they satisfy the non-dimensional 

parameter 𝑝 = 2√Bi𝐿Ar = 2√2. 
The analytical solution from Eq. (23) for the 

thermocouple tip temperature ΘTC(𝑦̃ = 1, 𝜏) as 

well as the results for an ideal probe 

Θideal(𝑦̃ = 1, 𝜏) are depicted in Fig. 7. The latter 

represents a perfect probe that is neither affected by 

inertia nor by the conductive stem effect. 

Additionally, the numerical results from the fluid 

temperature correction are illustrated in Fig. 7 as 

non-dimensional values Θf,corr(𝜏). These were 

recomputed from the analytical solution 

ΘTC(𝑦̃ = 1, 𝜏). 

 

Fig. 7: Fluid temperature correction for  

𝒑 = 𝟐√𝑩𝒊𝑳𝑨𝒓 = 𝟐√𝟐 using 500 control volumes and 

a time step of 𝜟𝝉 = 𝟏𝟐𝟒𝟎 

When comparing the recomputed fluid 

temperatures Θf,corr(𝜏) and the ideal probe 

Θideal(𝑦̃ = 1, 𝜏), the curves show a perfect match. 

Immediately after the temperature jump a 

maximum deviation of  

|Θf,corr(𝜏) − Θideal(𝑦̃ = 1, 𝜏)| ≈ 6.2 ∙ 10
−3 occurs. 

As a result, an inverse calculation of the fluid 

temperature based on measurement data is possible 

if the model parameters are known. This procedure 

represents a correction calculation that eliminates 

the combined impact of inertia and conductive stem 

effect in thermocouple measurements. 

Determination of model parameters 
The preceding section proved the capability of 

the fluid temperature correction. However, a major 

problem remains that is the determination of the 
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unknown model parameters. For real 

thermocouples the material density 𝜌, heat 

conductivity 𝑘, heat capacity 𝑐 and the contact 

coefficient 𝛼w are unknown. Without knowledge of 

these parameters the equation system remains 

under-determined. 

To resolve this problem, the following 

procedure is proposed: According to Fig. 8, two 

identical thermocouples are mounted in a flow 

channel such that they are exposed to a cross flow 

situation. The immersion length of these probes 

differ but their tips are close together without 

touching each other. Due to their spatial vicinity, 

both tips are exposed to the same fluid 

temperature 𝑇f. However, the thermocouple tip 

temperatures 𝑇Tc(𝑦 = 𝐿) differ because of the 

different immersion lengths that impact the 

conductive stem effect.  

For the determination of the model parameters 

a single experiment is required, which is also 

termed calibration measurement in the following. 

This calibration measurement starts from thermal 

equilibrium and imposes a strong change in fluid 

temperature while recording both thermocouples 

simultaneously with a high sampling rate. Attention 

needs to be payed that no time offset between the 

measured data of the different thermocouples 

occurs. Moreover, high measurement accuracy is 

essential. 

 

Fig. 8: Experimental setup for determination of the 

model parameters 

The numerical model of the calibration 

experiment combines both thermocouples and, 

thus, involves five unknown parameters: 𝑘1 = 𝑘2, 

𝑐1 = 𝑐2, 𝜌1 = 𝜌2, 𝛼𝑤1 and 𝛼w2. In order to 

determine these parameters an initial guess is 

required. Based on this initial guess the model is 

able to recompute the fluid temperature for each of 

the two thermocouples. Most likely, these 

recomputed fluid temperatures do not coincide and 

hence the model parameters need to be modified. 

Therefore, the calibration calculation optimizes the 

parameters until the recomputed fluid temperatures 

coincide for every measured time step. The 

calibration calculation then yields a best fit match 

for the unknown model parameters. 

Finally, some considerations on the parameter 

determination are drawn in order to improve the 

physical understanding of the model: The 

numerical model incorporates several assumptions 

and simplifications that are not in accordance with 

the conditions in real experimental investigations. 

Therefore, the model contains some inaccuracies. 

By conducting the parameter calculation, the 

numerical algorithm aims to compensate these 

inaccuracies as best as possible in order to satisfy 

the condition of the same fluid temperature 𝑇f for 

both thermocouples. Hence, the resulting 

parameters can be understood as calibrated model 

coefficients, which do not necessarily reflect the 

real material properties and the real contact 

coefficients. This, furthermore, implies that the 

model parameters strongly depend on the 

prescribed boundary conditions such as wall 

temperature distribution and velocity profile. 

The preceding section demonstrated that all 

unknown model parameters can be determined and 

the model, thus, works from a theoretical point of 

view. Part II of this paper [1] continues at this point 

by addressing the practical application of the model 

for real experimental investigations. 

CONCLUSION 
Considering two-wire thermocouples two 

major measurement errors were investigated: a 

capacitive inertia effect and a conductive stem 

effect. In this context an analytical model was set 

up including the transient behaviour of a 

thermocouple’s heat conducting stem. 

In case of simple boundary conditions like an 

adiabatic thermocouple tip, an isothermal wall and 

an ideal jump in fluid temperature, the 

corresponding analytical solution was derived. 

While the inertia effect is predominant in small 

timescales the conductive stem effect occurs at 

larger timescales. Even though time delaying 

transient inertia effects are commonly corrected in 

literature by a time constant correction of an 

exponential function it was shown that this 

procedure is not applicable when considering the 

combined impact of inertia and conductive stem 

effect in thermocouples. Due to the shape of the 

solution of a linear superposition of stationary and 

transient solutions, an infinite amount of 

superimposed time constants respectively 

eigenvalues of the solution are necessary. 

Because of even more complex boundary 

conditions in measurement applications a by far 

more flexible numerical model was developed. A 

validation and grid study based upon the analytical 

solution was performed. Moreover, an inverse 

calculation method is introduced recalculating the 

real fluid temperature out of measurement data. In 

a comparison with the analytical solution for an 

ideal temperature jump the numerical recalculation 

verifiably shows the elimination of the combined 

inertia and conduction effect. Nevertheless, the 

material properties represented as numerical model 

coefficients remain unknown until an experimental 

calibration is executed. Such one is shown in rough 

outlines and its application will further be 

demonstrated in Part II [24]. 
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To sum up, the theoretical considerations are 

represented by an analytical solution and further 

met fully by the introduced numerical simulations, 

but still require experimental validation data. It is 

envisioned, that by an identification of various 

thermocouple types and reproducible installation a 

correction of the measurement errors can be 

generalized. 
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