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ABSTRACT 

Recent experimental measurements of 
unsteady entropy at exit from a high pressure 
turbine stage at engine-representative conditions 
have clearly shown that there are significant high 
frequency effects associated with the aspirating 
probe. This probe is the only current method of 
measuring entropy, which is vital in improving our 
understanding of unsteady flow fields, particularly 
the loss mechanisms. The two main high frequency 
effects, caused by the hot wires and the internal 
flow field, are examined here and their impact on 
the accuracy of unsteady entropy measurements 
presented. It is shown that the hot wire effects must 
be considered, but can be compensated for, whereas 
the internal flow field effects severely limit the 
performance of the aspirating probe. 

 
 

INTRODUCTION 
The flow fields inside turbomachines are still 

far from being understood thoroughly, due to the 
high degree of unsteadiness and effects of blade 
row interaction found therein. There is still much 
experimental work to be performed on 
understanding the formation of loss and on 
quantifying its effects on the stage efficiency at 
engine-representative conditions. 

Since efficiency is usually defined as the ratio 
of the actual work output to the isentropic work 
output, only rises in entropy can reduce the 
efficiency. As entropy is only generated by heat 
transfer or flow irreversibility, "the only rational 
measure of loss in an adiabatic machine is entropy 
creation", Denton, 1993. 

Entropy is independent of the frame of 
measurement and can be converted to efficiency if 
only one other property of state is known: 
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However, it cannot be measured directly and only 
changes in entropy have any meaning: 
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Thus to make accurate measurements of 
entropy, two properties of state must be measured 
simultaneously, both spatially and temporally, 
relative to a reference condition. Since the 
aspirating probe is currently the only means of 
simultaneously measuring total pressure and total 
temperature both spatially and temporally, it is the 
sole option for unsteady entropy measurements. 

Experimental measurements of unsteady 
entropy have recently been made at exit from a 
high pressure turbine stage, Payne, 2001, and 
Payne et al., 2002. These clearly showed the loss 
structure and allowed the effects of different loss 
mechanisms on the stage efficiency to be 
quantified. However, these measurements also 
showed that there are significant high frequency 
effects associated with the aspirating probe. These 
are now presented in detail, following an outline of 
the working of the aspirating probe. 

 

NOMENCLATURE 
a Overheat ratio 
c Specific heat capacity; Speed of sound 
d Diameter 
h Heat transfer coefficient 
k Thermal conductivity 
l Length 
n Constant 
p Pressure 
s Specific entropy 
t Time 
u Velocity 
x Length 
A Area 
C Constant 
D Constant 
E Voltage 
F Function 
G Sensitivity coefficient 
I Current 
K Constant 
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M Mach number 
Nu Nusselt number 
R Gas constant 
T Temperature; Time constant 
Z Fluctuating component 
αααα Temperature coefficient of resistance 
ββββ Constant 
γγγγ Ratio of specific heats 
ηηηη Efficiency; Recovery factor 
ρρρρ Density; Resistivity 
ττττ Overheat ratio 
χχχχ Ratio of heat transfer terms 
ωωωω Frequency 
 
Subscripts: 
a Ambient 
m Mean 
mf Medium frequency 
o Total conditions 
ref Reference conditions 
s Supports 
ss Steady state 
w Wire 
1 HP vane inlet conditions 
2 HP rotor exit conditions 
 
Superscripts: 
−−−− Time mean 
* Choked 
′′′′ Fluctuating component 

 
 

THE ASPIRATING PROBE 
The aspirating probe, Ng and Epstein, 1983, 

essentially consists of two hot wires placed 
upstream of a choked orifice, Figure 1. By 
calculating the mass flow for a given total pressure, 
total temperature and Mach number, the mass flow 
at the choked orifice and the hot wire plane can be 
equated to give: 
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Since the Mach number at the hot wire plane is 
fixed by the area ratio: 
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the heat transfer coefficient is only dependent upon 
the Reynolds number, which in turn is only 
dependent upon the total pressure and total 
temperature. This gives the standard calibration 
equation for hot wire i: 
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The recovery factor, η , is the ratio of recovery 

temperature to total temperature and C, D and n are 

constants. These constants are all found by 
calibration, despite η being a known function of 
Mach number, to give the greatest accuracy. Two 
hot wires inside the aspirating probe thus yield two 
simultaneous equations in total pressure and total 
temperature, which can easily be solved to give 
total pressure and total temperature and hence 
entropy. 

 
 

HOT WIRE FREQUENCY RESPONSE 
The frequency response of a hot wire is found 

by analysing the general hot wire equation, for 
example Højstrup et al., 1976: 
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where the constants are given by: 
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The two main assumptions made are that the radial 
variations in wire temperature and the radiation 
heat transfer have negligible effect on the accuracy 
of the solution, Payne, 2001. 

The complete solution to equation 6 requires 
the variation of all the parameters that depend upon 
the flow field: the current, heat transfer coefficient, 
flow temperature and wire temperature distribution. 
It is thus linearised about the steady state value by 
assuming small fluctuations to give: 
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Each component is assumed to vary 
sinusoidally: 
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giving an equation of the form: 
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where ( )ωjGa  and ( )ωjGh  are given at the end 

as equations 17 and 18. The following definitions 
are used: 
 1111 Kjωββ += , 19 

 ( ) ( )
a

w

Z

lxZ
jF

±=
=ω , 20 

 
1

1

β
ωω K=′ , 21 

 ( )ll 111 coth ββξ = , 22 

 ( )ll 111111 coth ββξ = , 23 

 ( )refmref TTa −= α , 24 

 ( )ama TTa −= α , 25 

 ( )
a

am

T

TT −
=τ . 26 

Some simplifications can be made if it is 

assumed that l1β  is larger than approximately 3, 

i.e. that there is a reasonable amount of heat 

transfer. 1ξ  can be found from the overheat ratio if 
the ratio of heat transfer by conduction to heat 
transfer by convection: 
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is known. This gives: 
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which allows 1ξ  to be found iteratively once the 
overheat and heat transfer ratios are known. 
Equation 23 can also be simplified to give: 

 ωξξ ′+= 1111 . 29 
However, since the hot wire is calibrated at 

zero frequency, the predicted steady state behaviour 
must be examined, since this determines the 
reference behaviour with which the general 
frequency response must be compared. We define 
the reference temperature to be equal to the 
ambient temperature to simplify the analysis. By 
letting the frequency tend to zero in equations 17 
and 18: 
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The changes in sensitivity coefficients relative to 
the steady state are given at the end as equations 32 
and 33. 

There are thus only four dependent parameters: 
the overheat ratio (a), the frequency response of the 
supports (F(jω)), the ratio of heat transfer terms (χ) 
and the non-dimensional frequency (ω′). The 

parameter used to non-dimensionalise the 
frequency, equation 21, represents the attenuation 
frequency of the heat waves along the wire, and can 
be thought of as the time constant of the wire, Tw, 
reduced by the factor 2

1ξ  due to the feedback loop: 
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The frequency response of the hot wire 
supports is assumed to be a simple low-pass filter, 
as in Højstrup et al., 1976, Freymuth, 1979, and 
Parantheon et al., 1983: 
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The time constant is typically taken to be 1 second 
and this value has also been adopted here: its 
precise value is relatively unimportant, since the 
corresponding break frequency is much lower than 
most experimental measurements of interest. 

Equations 32 and 33 are shown in Figure 2 for 
typical flow conditions and varying overheat ratio. 
The flow field is that in which the experimental 
measurements in Payne et al., 2002, were made: 
total pressure of 3.25 bar, total temperature of 
297 K, Mach number of 0.45 with wire diameter 
and length of 5 µm and 1.2 mm. This gives a heat 
transfer ratio of 0.1390 and we set the time 
constants to be 0.001288 s and 1 s for the wire and 
the supports respectively. 

There are two break frequencies, one due to 
the attenuation of heat transfer to the supports, and 
the other due to the attenuation of heat waves along 
the wire. The first only affects the sensitivity to 
temperature fluctuations and occurs at 
approximately 1 Hz, but the second affects both 
sensitivities. Although it starts to occur at 
approximately 10 kHz, its effects last until 
approximately 1MHz. The phase errors are 
negligible. 

Since most experimental frequencies lie 
between the two break frequencies, the plateau 
level in this region is of greatest interest. Although 
the heat transfer sensitivity coefficient remains 
unchanged, the temperature sensitivity coefficient 
is: 
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This is almost independent of the overheat ratio 
and the difference between this value and the ideal 
value is approximately equal to the heat transfer 
ratio, χ . For given flow conditions this difference 

can only be reduced by an increase in the 
length/diameter ratio. Since this reduces the spatial 
resolution, some compromise is inevitable. 

We now apply the general hot wire results to 
the aspirating probe, using equation 5. The 
sensitivity of hot wire voltage to changes in total 
pressure and total temperature is: 
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where: 
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similar to equation 26. Since the values of in  and 

iτ  are found by calibration at zero frequency, the 

changes with frequency result in: 
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where the transfer functions are given in equations 
32 and 33 at the end. 

By solving the equations for the two hot wire 
voltages simultaneously, the fluctuations in total 
pressure and total temperature can be found as 
functions of the voltage fluctuations: 
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These then give a sensitivity of entropy to 
changes in wire voltages: 
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where: 
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An absolute error must be given, since entropy has 
no absolute reference level. 

Since the sensitivity to flow fluctuations varies 
with frequency, using a steady state calibration will 
inevitably incur errors when measuring the flow 
parameters at any significant frequency. Since this 
is somewhat intractable analytically, it will now be 
examined numerically. 

We generate a flow field similar to that found 
at exit from a high pressure turbine stage by Payne 
et al., 2002. The fundamental rotor passing 
frequency is 8.91 kHz and the fluctuations in total 
pressure and total temperature are largely isentropic 
with a wake at approximately 60 % rotor passing 
generating most entropy. We assume that the flow 
field is measured with an aspirating probe of the 
dimensions given above, operating at overheat 
ratios of 0.2 and 1.0, the minimum and maximum 
allowable in practice. Hot wire voltages are 
generated using the high frequency analysis given 

above and then converted back to total pressure and 
total temperature using the uncorrected calibration. 

The resulting entropy is shown in Figure 3 in 
comparison with the original plot. There is a 
noticeable difference between the two, showing 
that there is a significant high frequency effect, 
although it is reassuring that the difference is not 
such as to swamp the fluctuations in the signal. 
This effect must be compensated for using the 
theory above, but it does not cause a catastrophic 
effect in measuring unsteady entropy. 

 
 

FLOW FIELD EFFECTS 
Having examined the high frequency effects of 

the hot wires inside the aspirating probe, the high 
frequency effects due to the flow field inside the 
aspirating probe will now be presented. These 
effects are due to the fact that the nozzle remains 
choked at all times, affecting the behaviour of the 
upstream flow field. 

By considering conservation of mass, 
momentum and energy in an unsteady flow field, 
three general equations can be developed for one-
dimensional unsteady flow in a duct of changing 
cross-sectional area, Shapiro, 1957: 
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Each flow property is split into its time-mean 
and time-varying components, assuming that the 
time-varying component is much smaller than the 
time-mean component. The time-mean equations 
reduce to: 
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These can be integrated to give the standard 
equations for conservation of mass, total 
temperature and entropy with distance, or re-
arranged into the form: 
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The differential equations for the fluctuating 
components can then be found by assuming 
sinusoidal variations, giving: 
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In matrix form, these equations become: 
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and the matrix T is given in equation 59 at the end. 
Since the Mach number varies across the 

length of the tube, the solution is non-linear and 
must be solved numerically. However, at the throat, 
the Mach number tends to unity and thus the matrix 
T must be considered carefully. To prevent the 
matrix tending to infinity, the fluctuations must be 
in such a ratio that the matrix tends to zero instead. 
This can only be achieved when the fluctuations 
are in the ratios: 
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Since the aspirating probe is primarily used to 
measure entropy, via total pressure and total 
temperature, the relationship between the three 
properties of state used thus far and the Mach 
number, total pressure and total temperature is 
required: 
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where: 
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Hence, at the throat: 
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The ratio between total pressure and total 
temperature fluctuations at the throat is 2γ , in 

comparison to an isentropic ratio of ( )1−γγ . This 
ratio is independent of the fluctuations at inlet to 
the probe and thus provides a severe restraint on 
the behaviour of the probe. 

Although the hot wires are upstream of the 
throat, the flow field is set by the area variation and 
the frequency of oscillation. This can only be found 
numerically, but is simplified by the linearity of the 
model and the fixed relationships between the 
variables at the throat. For a fixed geometry and 
frequency, a small fluctuation in Zu

+ is set up at the 
throat and the flow field solved backwards towards 
the entrance. The differential at the throat is: 
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Since the solution is linear, any differences in the 
magnitude and phase of Zu

+ merely adjust the 
magnitude and phase of all the other parameters 
equally. 

The quantity in which we are most interested is 
the ratio of total pressure fluctuations to total 
temperature fluctuations at the hot wire plane. For a 
probe with internal diameters 1 mm and 1.2 mm at 
the throat and hot wire planes respectively 
(corresponding to an inlet Mach number of 0.45), 
the magnitude and phase of this ratio are shown in 
Figure 4. A numerical solver was run in Matlab 
with 300 randomly generated frequencies in the 
range 1 kHz to 100 kHz. At low frequencies, the 
ratio is very close to 2γ , but it increases rapidly 
with frequency, as does the phase. Interestingly, 
there is a range of possible solutions over most 
frequencies. This is a characteristic of the non-
linearity of the solution: although the equations 
were linearised in the fluctuating parameters, 
equation 57 is non-linear. 

However, this range is small and the 
performance of the aspirating probe is severely 
limited by this restriction. In particular, it is not 
possible to measure over a wide range of total 
pressure and total temperature fluctuations, as the 
flow field inside the probe ‘adjusts’ the magnitude 
and phase of any fluctuations to the values shown 
in Figure 4. Some prior knowledge is thus required 
about the flow field to measure unsteady entropy 
accurately: this was possible in Payne et al., 2002, 
as previous experimental measurements of 
unsteady total pressure were available. 
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SUMMARY AND CONCLUSIONS 
There are two high frequency effects involved 

in the aspirating probe: one due to the attenuation 
of heat transfer in the hot wires and supports and 
one due to the attenuation of flow field fluctuations 
inside the probe. The first effect has been analysed 
and a compensation factor derived, allowing 
measurements to be corrected: the effect is also 
relatively small, which prevents the errors from 
becoming significant. However, the second effect is 
much more significant, as the fluctuations in total 
pressure and total temperature are largely fixed by 
the geometry of the probe. This provides a severe 
restraint on the performance of the probe and 
prevents it from being used without some other 
knowledge of the flow field. The aspirating probe 
should thus be used with great care when making 
unsteady entropy measurements. 
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Figure 1 Oxford aspirating probe design, dimensions in mm 

 

 
Figure 2 Variation of sensitivity coefficients with frequency (f) and overheat ratio (a) 

 

 
Figure 3 Unsteady entropy: comparison of measured fluctuations with actual fluctuations 
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Figure 4 Magnitude and phase of ratio of total pressure/total temperature fluctuations 


