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ABSTRACT
Guibert & Dicocco have recently designed and
tested a sensor for measuring the equivalence ratio
of a mixture of hydrocarbon fuel and air. Since this
sensor utilised the operating principles of constant
temperature, hot-wire anemometry, it is in principle
capable of a fast dynamic response even though
Guibert & Dicocco only verified the sensor’s
function at low frequencies. This paper therefore
intends to develop further the ideas of Guibert &
Dicocco by proposing quasi-analytic transfer
functions that govern the sensor’s dynamic
performance. Classical control techniques are then
used to examine the frequency response, stability
and the sensitivity of various sensor designs.

INTRODUCTION
Numerous engineering devices utilise the
combustion of hydrocarbons for the production of
mechanical energy. Most of these systems, such as
automotive engines or gas turbines, feature
important combustion phenomena with short time
scales. In order to observe these phenomena, a fast
response sensor for the measurement of air-to-fuel
equivalence ratio is highly desirable.

Guibert & Dicocco [1] have recently designed
and tested one such sensor for the measurement of
the equivalence ratio of a mixture of hydrocarbons
and air. As Figure 1 shows, their sensor consists of
a choked sampling tube which heats the air fuel
mixture to a constant temperature prior to the
mixture passing over a Platinum/Iridium hot-wire.
The throat and the heating element therefore
remove the sensitivity of the hot-wire to
fluctuations in velocity and temperature.

Figure 1: Schematic sectional diagram of Guibert
& Dicocco's [3] sensor (from [3])

This sensor utilises the operating principles of
constant temperature anemometry (CTA) with hot-
wires, but with several significant differences. In
the case of CTA, the electrical input to the hot-wire
is intended to balance only the convective loss of
energy from the wire to the passing fluid. Thus, the
voltage over the wire is related to the fluid velocity.
With Guibert & Dicocco’s equivalence ratio sensor,
the hot-wire is made from a catalytic material and
is heated to a temperature above the ignition
temperature of the fuel/air mixture. The wire
therefore causes the mixture surrounding it to react
and release energy to the wire. As Guibert &
Dicocco show, the voltage across the wire is then
related to the local air/fuel equivalence ratio around
the wire.

However, Guibert & Dicocco only verified the
function of their sensor for low frequencies. This
paper is therefore intended to develop further the
ideas of Guibert & Dicocco by proposing quasi-
analytic relationships that govern the sensor’s
dynamic performance. Linear theory that is based
on that presented in Perry [7] for CTA is used to
derive the transfer function between the local
equivalence ratio surrounding the wire and the wire
voltage. Using Perry’s [7] bridge circuit and related
electronics, the transfer function between the
equivalence ratio and the bridge output voltage is
then determined. When incorporated into the
bridge, the bandwidth of the sensor is similar to
usual CTA configurations, but with added effects
due to the mass transfer and catalysis. Including
these additional parameters, classical control
techniques are then used to determine the optimal
frequency response and sensitivity of various
configurations.

NOMENCLATURE

wA wire surface area ( 2m )

a sensitivity of hot-wire’s resistance to 
temperature variations (1/ K )

gC hydrocarbon concentration in the gas

( 3/mol m )

wC hydrocarbon concentration on the wire surface

( 3/mol m )
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c specific heat capacity of hot-wire ( 3/J m K )

hD hydrocarbon diffusion coefficient ( 2 /m s )

wd wire diameter ( m )

wE hot-wire voltage (V )

we hot-wire voltage perturbation (V )

0E bridge output voltage (V )

0e bridge output perturbation voltage (V )

h heat transfer coefficient ( 2/W m K )

mh mass transfer coefficient ( /m s )
I current through hot-wire ( A )
i hot-wire current perturbation ( A )
k thermal conductivity of hot-wire ( /W mK )

1k constant

wl hot-wire length ( m )

Nu Nusselt number based on hot-wire diameter

JP Joule heating of hot-wire (W )

AP accumulation of heat within the hot-wire (W )

RP power generated by the catalysis (W )

TP energy lost by forced convection (W )
Pr Prandtl number

gR hot-wire resistance at the gas temp. (� )

wR hot-wire resistance at the operating temp. (� )

0R hot-wire resistance at the reference temp. (� )

Re  Reynolds number based on hot-wire diameter
Sh Sherwood number
s Laplace transform variable

gT gas temperature ( K )

wT hot-wire temperature ( K )

wT hot-wire time constant ( K )

0T reference temperature ( 273.15K )

t time ( s )
U gas velocity ( /m s )
U mean gas velocity ( /m s )

'u velocity perturbation ( /m s )
V hot-wire volume ( 3m )
X constant
Y constant
y constant

� constant
� constant

� molar fraction of hydrocarbon ( /mol kg )

� air-to-fuel equivalence ratio

� mean equivalence ratio

� � equivalence ratio perturbation

� constant

g� density of mixture ( 3/kg m )

� rate of hydrocarbon consumption per unit
surface area ( 2/mol m s )

H� enthalpy of reaction ( /J mol )

THEORY
Problem formulation
Guibert & Dicocco’s sensor functions by balancing
the electrical energy into the hot-wire with the
energy transferred to and from the fluid, such that
the hot-wire is maintained at a roughly constant
temperature. This can be expressed as

J R A TP P P P� � � (1)

where RP  is zero for hot-wire anemometry [1, 7].
The Joule heating of the hot-wire is 

2
J wP I R� (2)

and, modelling the hot-wire as a ‘lumped body’ of
uniform temperature wT , the accumulation of heat
within the hot-wire is

.w
A

dT
P cV

dt
� (3)

Perry [7] expresses the resistance of the hot-wire at
temperature wT  in terms of a power series truncated
to first order:

� �0 01 .w wR R a T T� � �� �
� �

(4)

Defining the resistance of the hot-wire at the gas
temperature gT  similarly, it follows that

� �0 ,w g w gR R aR T T� � � (5)

which, combined with equation (3), gives

1 .w
A

dR
P k

dt
� (6)

where

1
0

.
cV

k
aR

�

Newton’s law of cooling states that

� �.T w w gP hA T T� � (7)

By combining Kramers’ [6] empirical law for the
forced convection from an infinitely long, straight
circular cylinder in a cross-flow:

0.2 0.330.42 0.57 ,Nu Pr Pr Re� � (8)
with equation (5), Perry [7] expresses the
convective heat loss as

� � � �T w gP R R F U� � (9)

with � �F U  defined as

� �F U X Y U� �

with constants

0.2

0

0.42 S

w

A k
X Pr

R ad
�

and
0.5

0.33

0

0.57 .g wS

w g

dA k
Y Pr

R ad

�

�

� �

� � �
� �

� �

Power generated by catalysis
The sensor studied by Guibert & Dicocco [3]
exploits a catalytic reaction on the hot-wire surface,
which releases its enthalpy of reaction into the hot-
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wire. By considering the conservation of
hydrocarbons on the surface in terms of the
hydrocarbon concentration wC , Guibert & Dicocco
write that:

� � � �, ,w
m g w w w

dC
h C C C T

dt
�� � � (10)

by assuming that the catalytic reaction rate is
instantaneous. Since the hydrocarbons on the
surface are consumed during operation, Guibert &
Dicocco argue that wC  tends to zero and equation
(10) can be expressed as

� �, ,m g w wh C C T�� (11)

where

h
m

w

Sh D
h

d
� (12)

and
.g gC � �� (13)

Guibert & Dicocco express the molar fraction of
hydrocarbon in terms of the air-to-fuel equivalence
ratio

� �

�

�

� �

�

�

(14)

where �  is a constant defined as

4.76
4

y
x�

� �
� �

� �

� �

for a hydrocarbon molecule x yC H . It is noted that

59.5� �  for octane ( 8 18C H ) and is larger for
longer chain molecules.

The power generated by the catalytic reaction
is:

� � ,R wP H A�� �� (15)

which, substituting in equations (11)-(14), becomes

� �RP �� �� (16)

with the constant �  defined as 

� �.w g hl Sh D H� � �� ��

Hot-wire energy balance
Equations (1), (6), (9) and (16) therefore express
the overall energy balance of the hot-wire in terms
of the significant variables:

� � � � � �
2

1
w

w w g

dR
I R R R F U k

dt
�� �� � � � � (17)

To a linear approximation, the voltage perturbation
over the hot-wire is

00

,w w
w

i

E E
e i

I
�

�

�
���

� �� � � �
�� �� � � �

� �	 
	 


(18)

where it is noted that Guibert & Dicocco’s sensor
operated under a constant cross-flow velocity U ,
meaning that a velocity perturbation term does not
appear in equation (18). Both partial derivatives on
the right hand side of equation (18) are then
evaluated from equation (17). 

It is noted that the catalytic reaction has been
modelled as instantaneous. This assumption is
reasonable since the catalytic reaction rate is
expected to be of order 910 s�  [5]. As is shown
later in this paper, this time-scale is several orders
of magnitude smaller than those associated with the
hot-wire and related circuitry, meaning that it has
negligible effect on the sensor’s bandwidth.

It is also noted that radiative heat exchange is
not included in equation (17). Giubert & Dicocco
[3] found that this term is small compared to those
included in the energy balance. Obviously,
radiative exchange is effectively instantaneous, and
so must also have negligible effect on any of the
sensor dynamics of interest.

Evaluation of � � 0
/w i

E �
�

� �

Using Ohm’s law, it follows that

0 0 0

w w w

i i i

E R r
I I

� � �
� � �

� �� � � � � �

� �� � � � � �
�� �� 	 � 	 � 	

(19)

Replacing wR  and �  by their respective mean and
perturbation quantities in equation (17) gives

� � � �

� � � � � �

2

1 .

w w

w w g w w

I R r

d
R r R F U k R r

dt

�� � � �� � � �

� � � � �

(20)

It is noted that the function � �� � � ��  is non-linear

in � �  and that the accuracy of a given truncated
series approximation for this function depends on
the hydrocarbon under investigation via the term �
in equation (14). For example, Figure 2 shows a
comparison between the analytic expression for �
with the simplest approximation from its binomial
series expansion

� �
'
.

� �

� �

�

�

� (21)

This approximation is adequate for octane but
clearly inadequate for methane. Indeed, the longer
the hydrocarbon chain, the more accurate this
approximation becomes since �  becomes larger.
Equation (21) is therefore an acceptable
approximation to equation (14) for octane and
longer chain hydrocarbon molecules i.e. the main
constituents of automotive and aircraft fuels.
Importantly, acceptable approximations for �  can
be found for methane and other short molecules by
including terms with a linear dependence on '�

and higher powers of �  and � . This means that
linear analysis is reasonable for any hydrocarbon of
interest.

Retaining only the first order terms, the time
average of equation (20) is

� � � �
2 ,w w gI R R R F U

��

�

� � � � (22)
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and its fluctuating component is

� �
2

1

'
.w

w w

dr
I r r F U k

dt

��

�

� � � � (23)

Expressing equation (23) using the Laplace
transform variable s , the transfer function between

the wire resistance � �wr s  and the fluctuation in

equivalence ratio � �' s�  is

� �

� � � � � �
2' 1

w

w

r s

s F U I T s

�

� �

�

� �� �
� �

(24)

with the hot-wire time constant

� � � �

1 .w
w

g

R k
T

R F U �� �

�

� ��
� �

(25)

Substituting equation (24) and the expression for
I  in equation (22) into equation (19), it follows
that

� �0
1

w

wi

E y

T s�
�

�� �

�� �
� �� 	

(26)

where

� � � �

.w

g

R I
y

R F U

�

�� �

�

� ��
� �

(27)

Figure 2: Exact (solid lines) and approximate
(dashed lines) variation of �  with '�  for 1� �

Evaluation of � � ' 0
/wE I

� �

� �

The derivation of � � ' 0
/wE I

� �

� �  involves similar

working to that of � � 0
/w i

E �
�

� �  presented above.

Once again, using Ohm’s law

' 0 ' 0

' 0

.

w w
w

w
w

E R
R I

I I

r
R I

i

� �

�

� �

�

� �� � � �
� �

� � � �
� �� 	 � 	

� �
� �

� �

� 	

(28)

Analogous to equation (20), wR  and I  are
replaced by their respective mean and perturbation
quantities in equation (17). Retaining only the first

order terms, equation (22) is the time average of
the resulting equation, with fluctuating component

� �
2

12 w
w w

dr
iR I r F U I k

dt
� �� � �
� �

(29)

Using Laplace transforms, it follows that
� �

� � � � � �
2

2

1
w w

w

r s R I

i s F U I T s
�

� �� �
� �

(30)

where the hot-wire time constant wT  is defined in
equation (25). Substituting equations (30) and (22)
into equation (28) gives

� �' 0 1
w

w
w

E
R

I T s
�

�

�

�� �
� �

� �
� �� 	

(31)

where

� �

� � � �

2 1 .
w

w

g

R F U
R

R F U
�

�� �

� �
� �

� �� �

� 	
� �
� � �

(32)

Hot-wire transfer function
From equations (18), (26) and (31), the transfer
function relating the hot-wire voltage perturbation
to the equivalence ratio and hot-wire current
perturbations is

� �

� �

� �

� �

� �

'
1

1

w
w

w
w

y
e s s

T s

R i s
T s

�

�

�

�

� �

� �� �

�� �� �

(33)

where the constants wT , y  and �  are defined by
equations (25), (27)  and (32) respectively.

Feedback circuit and overall transfer function
Figure 3 shows the hot-wire feedback circuit used
by Perry [7]. The hot-wire resistance is in series
with an inductance wL , which arises from the leads
connecting the hot-wire to the bridge. Perry [7]
shows that this inductance, and the balance
inductance bL , must be modelled in order to model
the often observed oscillation and instability of hot-
wire feedback circuits.

Figure 3: Perry’s [7] hot-wire feedback circuit

Elementary circuit analysis with ideal amplifiers
gives the following relations between the
perturbation variables
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� �0 1 ,a w we R L s i e� � � (34)

� �0 2 ,c b be R R L s i� � � (35)

and

� �0 1 2i a ce Ke K R i R i� � � (36)

where
.a bK K K�

The transfer function between '�  and 0e resulting
from a linearised approximation to the combination
of equation (33) with equations (34)-(36) has three
poles and a single zero. However, Perry [7] shows
that if one of these poles and the zero are far
enough into the left half-plane, they have negligible
effect on the dynamics of the feedback circuit. This
is the case in the present investigation, and the
overall transfer function can be approximated by a
second order system defined as

� �

0 1

2 2' 2 1

e K

T s Ts� �

�

�

� �

(37)

where the sensitivity is
� �

� � � � � �
1 ,a b c

b c a w c

KR R R y
K

R R R R K R R� �

�

�

� � � � �

�
(38)

with

.w c a bR R R R R� �

�

The undamped natural frequency n�  of the circuit
is the reciprocal of T , which is defined as

� �� � � �

2 c w

b c a w c

KR LT
T

R R R R K R R� �

�

� � � � �

�
(39)

with

.a
w b

c

R
L L L

R
� �

Finally,

� �� �

� �� � � �

2 ,
a w b c w

b c a w c

R R R R KR T
T

R R R R K R R
�

� �

� �� � �
� �

�

� � � � �

�

�
(40)

which completes the model of the constant
temperature hot-wire sensor incorporated into the
feedback circuit.

DISCUSSION 
Frequency response of hot-wire
As was the case for constant temperature
anemometry [7], equation (26) shows that the
lumped body representation of the hot-wire results
in a first order transfer function between the hot-
wire voltage and the equivalence ratio. Equation
(31) shows that this is also the case for the transfer
function between the hot-wire voltage and the hot-
wire current. The hot-wire time constant wT  is the

same for both transfer functions and the terms �

and �  quantify the effect of the catalysis on the
hot-wire.

The frequency response of the hot-wire can be
estimated by using physically sensible values for

each of the terms in equation (26). This paper
assumes the following: i) the specific heat capacity
of the hot-wire c  is 32.86 /MJ m  [4], ii) the hot-

wire resistivity is 810 m�

�  [4], iii) the sensitivity

of hot-wire’s resistance to temperature variations a

is 33.5 10 1/ K�

�  [7] and iv) the hydrocarbon

diffusion coefficient hD  is 5 210 /m s�  [4]. Guibert

& Dicocco [3] used a hot-wire of length wl  of

3mm  to study octane fuel. Their sensor shown in
Figure 1 had a Reynolds number based on hot-wire
diameter of 15  and, it is assumed, a Prandtl
number of 0.7 . With the hot-wire heated to 950K ,
which was above the experimentally observed self-
ignition temperature of stoiciometric octane, the
above parameters give a mean resistance wR  of

0.572 �  for their 15 m� hot-wire. Most
importantly, the hot-wire’s time constant  is
0.00241 s , meaning that its roll-off frequency is

66 Hz , and its sensitivity y  is 0.183 V .
The resulting transfer function given by

equation (26) is shown in Figure 4 for both the
15 m�  and 5 m�  hot-wires. As expected, the
smaller diameter hot-wire has a broader bandwidth,
due mainly to its smaller volume. The smaller
diameter wire is also more sensitive primarily
because of the relative scaling of the hot-wire’s
volume and surface area with its diameter.
Reducing the diameter reduces the total amount of
energy released into the hot-wire by the catalytic
reaction because the hot-wire’s surface area is
reduced. However, the thermal capacity of the hot-
wire is reduced by a greater degree because it is
dependent on the hot-wire’s volume.

Figure 4: a) Amplitude and b) phase response of
hot-wire voltage to fluctuations in equivalence
ratio

It is also noted that the phase in Figure 4 is
always negative. This is the opposite to constant
temperature anemometry, and can be understood by
referring to the hot-wire’s energy balance in
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equation (17). Positive perturbations in velocity
decrease the internal energy of the hot-wire since
increased velocity increases the forced convection,
whereas positive perturbations in equivalence ratio
increase the hot-wire’s internal energy. This
negative phase relationship for the hot-wire transfer
function carries through the rest of the analysis.

The expression for the hot-wire time constant
given in equation (25) also shows that the catalysis
marginally increases the hot-wire frequency
response above that for constant temperature
anemometry. Ignoring the catalysis on the 15 m�
hot-wire in the present case results in a roll-off
frequency of approximately 49 Hz , as opposed to

the calculated 66 Hz  response given above for the
equivalence ratio sensor. It is emphasised, however,
that this effect is not expected to be large. Equation
(39) shows that the time constant of the bridge
circuit, which is the reciprocal of the circuit’s
undamped natural frequency, is proportional to the
square root of the hot-wire’s time constant, rather
than directly proportional.

Of course, the hot-wire’s sensitivity and
frequency response also depend on the
hydrocarbon being sampled. Although not
presented in this paper, preliminary calculations
nonetheless suggest that the sensitivity varies by
considerably less than an order of magnitude over
the range of hydrocarbons of likely interest. More
importantly, these calculations also suggest that the
frequency response appears to increase with
reduced hydrocarbon chain length, such that a
methane sensor with the parameters listed earlier
will have a roll-off frequency of roughly 145 Hz .
This is considered to be a significant, and is worth
investigating further experimentally.

Frequency response of feedback circuit
The transfer function relating the equivalence ratio
perturbations to the bridge output voltage is given
by equations (37) to (40). This is a second order
system, and the circuit parameters listed in Table 1
were varied in order to achieve a damping ratio �
of approximately 0.6 , which gives a reasonably
flat frequency response and acceptable step
response. The resulting frequency responses of
both the 15 m�  and 5 m�  hot-wires are shown in
Figure 5.

The undamped natural frequencies of both
wires can be seen in Figure 5 and are listed in Table
1. Based on the authors’ experience with CTA, the
calculated value of n�  is reasonable for the 5 m�

hot-wire, suggesting that the calculation for the
larger diameter wire is also reasonable. This thicker
diameter hot-wire is studied by Guibert & Dicocco
[3], and it has a bandwidth that is significantly
higher than any equivalence ratio sensor known to
the authors.

It should be noted that the reduced sensitivity
of the bridge output voltage to equivalence ratio
perturbations with the smaller diameter hot-wire is
not due to the sensitivity of the hot-wire itself. As
Figure 4 showed, the smaller hot-wire is more
sensitive. Rather, the reduced sensitivity of the
bridge output voltage arises from the choice of the
resistances listed in Table 1. These values were
chosen in order achieve the desired damping ratio
of 0.6.

hot-wire
diameter

5 m� 15 m�

K 1000 1000

� �cR �
1000 1000

� �wT ms 0.41 2.41

� �aR �
100 100

� �wR �
5.15 0.572

� �gR �
1.53 0.170

� �w bL L H��
5 5

� �bR �
47.5 60

� 0.604 0.597

1K 2.88 10.08

� �n Hz�
14,882 1,970

Table 1: bridge circuit parameters used for the
two hot-wire diameters studied

Figure 5: a) Amplitude and b) phase response of
bridge output voltage to fluctuations in
equivalence ratio

Finally, some mention should be made
regarding the choice of hot-wire diameter, since it
evidently has a large effect on the sensor’s
bandwidth. Recent discussions with Guibert [2]
revealed that the use of their relatively thick 15 m�

hot-wire was necessitated by mechanical
considerations. A hot-wire at 950K  is significantly
more likely to break than one operating at more
typical overheat ratios. It must therefore be thicker,
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especially given the relatively difficult operating
environments in which this form of hot-wire sensor
will most likely be used.

CONCLUSIONS
This paper presented a dynamic analysis of a

fast response, air-to-fuel equivalence ratio sensor
developed by Guibert & Dicocco [3]. This sensor
utilises the operating principles of constant
temperature hot-wire anemometry (CTA), with the
hot-wire made from a catalytic material that is
heated to a temperature above the ignition
temperature of the fuel/air mixture. The wire
therefore causes the mixture surrounding it to react
and release energy to the wire, thus acting
analogously to the forced convection sensing in
CTA.

The 15 m�  diameter hot-wire used in Guibert
& Dicocco’s [3] study was calculated in this paper
to have a bandwidth of 1,970Hz . By reducing the
sensor diameter to 5 m� , the calculated bandwidth

increased to 14,882Hz , although the high overheat
temperature of the sensor and its likely challenging
operating environments are expected to preclude
hot-wires as thin as this. Nonetheless, the thicker
diameter hot-wire studied by Guibert & Dicocco
[3] is calculated to have a bandwidth that is
significantly higher than any equivalence ratio
sensor known to the authors.
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