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1 Introduction

Due to the complexity of acrodynamic fast response probes very often the feasibility of their
manufacturing dictates the probes' shape. Additionally, their application in turbomachines
imposes some constraints regarding the optimum probe geometry. It was found that prismatic
probe bodies fulfil these requirements for fabrication best, furthermore, they are suited for
introducing them through very narrow holes in the casing of turbomachines. Also, and above
all, the minimisation of the probe size is of the utmost importance.

From the aerodynamic point of view the aspects for fast response probe designs can be divided
into static and dynamic criteria:

The desired features of aerodynamic probes based on static design criteria can be summarised
as follows: great calibration range and high sensitivity of the probe and calibration unaffected
by Mach number (chapter 2).

When introducing acrodynamic probes for dynamic measurements in turbomachines these
devices face highly fluctuating flow vectors (in magnitude and direction). Usually, however,
aerodynamic probes are calibrated in static flows (e.g. in a wind channel). Applying these static
calibration data for interpretations of dynamic flows may result in errors which can
considerably deteriorate the quality of the measurement. The aim of this work is to
guantitatively determine errors in flow-angle measurement associated with the differences
between static and dynamic calibration characteristics (chapter 3). The interpretation of dynamic
effects (chapter 4) of the flow around probes leads to their modelling (chapter 5).

2 Static Calibration of Probes

Among the multitude of design criteria for aerodynamic probes, especially for the use in fast
response measurements some restrictive demands seem to be important in order to improve the
accuracy of the measurement technique.

From a series of prismatic probes (fig. 2-1) calibration data were recorded in a closed-walled
wind tunnel (0.3 < Ma < 1.2). The geometries varied were a) total apex angle of the wedge
probes from 45 to 90° (probes no. 1, 5 and 6); b) relative locations of the sensing holes ljc =
0.5 and 0.75 (probe no. 1 & 2), ¢) nose radius of the probes r/c = 0 10 20% (probe no. 1,3 &
4) and d) circular cylinder (probe no. 7).
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Figure 2-1 Probes tested in air flow from 0.2 <Ma < 1.2

The evaluation of the data was performed with emphasis to the following features:

* Calibration range: The total calibration range must be greater than the maximum angle of
attack (static and dynamic, see e.g. GOSSWEILER 1992) encountered during actual
measurements in turbomachines. Within the quasi linear calibration range (figure 2-2 part A)
not only the description of the calibration data with polynomials is more accurate (see
KUPFERSCHMIED 1992) but also sensitivity and indication of static pressure of the probes
are almost independent of the angle of attack. However, it is the extension of the unambiguous
calibration range which is of primary interest (figure 2-2 part B). The definition for the yaw-
angle coefficient Ky used in figure 2-2 parts A and B is given by the equation

Kig = P1-P2
12 pg_P1+P2
2

where p1 and p2 represent the pressures recorded on the probe according to figure 2-2, pY the
total pressure of the test flow and (p) + p2) / 2 = quasi static pressure indicated by the probe.

Increasing the apex angle of wedge probes leads to greater calibration ranges (probes 1, 5 and
6). A considerable improvement is achieved when placing the sensing hole to the rear of the
probe (no. 2: 1/¢=0.75) or rounded shaping of the leading edge (probes 3 and 4).

= Yaw sensitivity S is expressed as the change of pressure difference py - pp of the probe per
degree of yaw in terms of kinetic pressure of the free stream

_dcpz
S = dao

_P1-P2
2

0o

2

A high sensitivity improves the angular resolution of the measurement. Generally, wedge
probes with small apex angles exhibit a higher sensitivity. Noteworthy are the findings that a
probe with a nose radius of 20% of its chord-length (no. 4 in Fig. 2.2, part C) exceeds the
sensitivity of all other configurations tested.
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Figure 2-2  Calibration range [°] (A: quasi-linear; B: unambiguous) and C: sensitivity S =
depyzidofor the probes tested (Ma = 0.5)

« The Mach number influence on static pressure measurement and sensitivity is shown fig. 2-3
for zero angle of attack (o = 0°). A value close to the true free stream static pressure pes, when

K zpl"'pZ
s ‘—zpm

becomes unity, can be measured by using circular cylinders (no. 7, fig. 2-3 for 0 > Ma > (.5)
or wedge-type probes with either very small total apex angles or locating the sensor to the rear
of the probe l/c = 0.75 (no. 2, fig. 2-3). The influence of Mach number on sensitivity S versus
Mach number is shown in figure 2-3 to the right. Ideally, a probe should show a constant value
over the whole Mach number range.
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Figure 2-3  Static pressure coefficient K; and yaw sensitivity S = depjaldo versus Mach
number at 0. = 0°



3 Dynamic Calibration of Probes

The diameters of probes employed for fast response measurements in turbomachines are
usually of the order of 1 < d < 6 mm depending on the number of sensing holes required. With
the ground harmonic frequency f of the flow fluctuations being identical to the blade-passing
frequency in the kHz-domain, free stream velocities u.. ranging from 100 to 300 m/s, the
governing characteristic non dimensional parameter k (reduced frequency) for dynamic flows is
of the order

k =¥ =0.05 ... 0.6

with Reynolds numbers

Re =2 - 4 . 10000 .. 120000

The experimental simulation of such a dynamic flow environment in air with exactly known
conditions lies far beyond the technical possibilities. In the experiments performed at our
laboratory sinusoidally oscillating probes were towed relative to the water at rest in a channel of
40 m total length with a cross section of 1 m2. By using large probes of about 30 mm width in
connection with the dynamic viscosity v of the water the dynamic similarity (reduced
frequency, Reynolds number) was followed with very low frequencies of oscillation (1 < f <
10 Hz) and low free stream velocities 1 < Uso < 5 m/s.

3.1 Experimental Setup

Figure 3-1 shows the driving mechanism for the angular oscillation of the probes in the water
channel and figure 3-2 the geometries of the probes tested.
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Figure 3-1  Driving mechanism for forced angular probe oscillation

The eccenter, driven by a DC-motor, forces a carriage to perform sinusoidal oscillations in the
x-direction. Via a transmission the probe oscillates rotationally around its centre. By varying the
eccentricity e the amplitude o of the angular motion can be determined.



The probes (total length 0.5 m) provided with endplates were cast from epoxy around a
stainless steel tube containing the matching part for the sensor shaft. For the 60°-wedge the
chordwise location of the sensing hole l/c = 0.25, 0.50 and 0.75 and the relative radius of the
leading edge r/c = 0 and 20% was varied. For comparisons, wedge probes with total included
angles of 45 and 90° and a circular cylinder were manufactured.
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Figure 3-2  Assembly of sensor-shaft and probe geometries tested

3.2 Results

During the experiments the dynamic response of the sensor was instantaneously recorded with
the minimum sampling frequency fs = 25 kHz of the data acquisition system. The evaluation of
the data was performed in a DEC-Vax environment (HERTER 1992): After digital filtering of
the signal (25 Hz) the power spectra were determined in the frequency domain and the
ensemble averages formed with respect to a trigger signal. Of this synchronised sampled data
the mean dynamic pressure coefficient ¢p; and standard deviation s were determined and
plotted versus the forced angle o of the experiment (fig. 3-3).

p1 (Ot)=l—~—§--;s(a)='\/ﬁ~1;~1-2 (cpy (o) - Tpy (@) )
i=1

pU
2

with o = & sin (©t) of the sinusoidal an gular motion and N = 50 representing the aumber of
oscillation cycles. Note that with this procedure for the coefficients cpy, in the following
denoted as cp1, all stochastic parts of the signal and frequency components not corresponding
to the frequency of oscillation, or higher and subharmonics, are suppressed.
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Figure 3-3  Dynamic pressure coefficient cpj, standard deviation s and power spectrum for
the 60°-wedge probe oscillated with an amplitude of o0 = 7.5° and reduced
Jrequency of k = 0.1, arrows denote the sense of rotation

The results of the dynamic calibration of the 60°-wedge probe with an amplitude of oscillation
of 15° and varied reduced frequency k are presented in fig. 3-4.
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Figure 3-4  Dynamic calibration data { o =15 °} of a wedge probe with a total included angle
of 60° in comparison to static values

With increased frequencies of oscillation the differences between dynamic and static calibration
data are seen to become significantly larger.

For technical reasons the probes tested where equipped with one sensing hole only. In order to
express the coefficient cp12 = cpy - cpy for yaw-angle measurement the opposing value cpz was
determined from cpj by the equation:

cpz(wt)=cp;(ot+7)

presuming the flow pattern in the water-channel to be fully symmetrical.



For the same probe as depicted in figure 3-4 the dynamic calibration data for a constant reduced
frequency k = 0.1 but varied amplitude ¢ of the oscillation the resulting pressure coefficient

cp12 is plotted in figure 3-5.
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Figure 3-5 Dynamic calibration data for a 60°-wedge probe, reduced frequency k = 0.1

with different amplitudes of oscillation compared to st

For low amplitudes of oscillation the curves show no hysteresis i

atic curve

ndicating linear relations

between parameters of fluctuation and experiment (see chapter 5). As the amplitude of the
oscillation is increased, non-linear effects begin to dominate the calibration data. For the highest

amplitude of oscillation tested the dynamic data exceed the static v

alues by approximately a

factor of 3. The consequence of these differences between dynamic and static calibration data 1s
that when evaluating the dynamic data applying static calibration we would interpret an angle of
attack which does not correspond to the true value (forced yaw angle & of the experiment), as

shown in figure 3-6.
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Figure 3-6  Determination of dynamic error ACy,



For a qualitative comparison of the different probe geometries tested (figures 3-7 and 3-8) the
dynamic error Adler (deviation between the interpreted and true flow angle) was determined by:

AGL. = CP12, dynamic - €P12, static
err &

dcplZ, static
dO!. o=0

The equation is valid only for the quasi-linear calibration-ranges (where dcpj2/da = const.) but
was applied to all configurations leading to an underestimation of the errors in cases where the
dynamic values exceed the static calibration range.

The resulting deviations of interpreted flow angle from the true value are shown in figure 3-7
for the 60°-wedge probe and a circular cylinder driven with the same parameters of oscillation.
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Figure 3-7 Dynamic calibration data and Aog,, (misinterpreted flow angle) for a 60°-wedge
probe and a circular cylinder oscillated with an amplitude oo = 15° and a
reduced frequency k = 0.11

Note that e.g. for the wedge probe the maximum misinterpreted flow angle At amounts to
approximately 50% of the quantity to be measured in a turbomachine which is represented by
the amplitude of the forced oscillation o = 15° in the experiment.

For a selected group of probe geometries tested the maximum error-angles occurring for varied
parameters of oscillation are plotted in figure 3-8.

1 The conditions simulated in figure 3-7 would correspond to the measurement of the flow in a turbomachine

luctuating * 15 ° with a frequency of 6 kHz and a free stream velocity of 250 m/s using a 4 mm probe
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Figure 3-8 Absolute maximum error-angles for wedge-type probes with total apex angles
of 45, 60 and 90° and a circular cylinder as a function of the amplitude of
oscillation for three different reduced frequencies k

To some extent the errors can be seen to depend both on amplitude and frequency of oscillation
while the geometry dramatically affects the dynamic errors. For the wedge-type configurations
(45 & 60°) in figure 3-8, qualitatively, the errors show an almost linear increase with amplitude
of oscillation to approximately the static stall angle (which is of the order of half the apex-angle
of the probes). From the probe geometries tested the circular cylinder was least affected by
dynamic flow phenomena.

4 Interpretation of dynamic effects

Dynamic flows around bodies comprise a multitude of phenomena of which according to the
literature the most important are: Circulation-induced lift and moving wall effects due to the
angular velocity of the relative incidence of the flow vector and inertia (added mass)
proportional to the angular acceleration. In dynamic flow environments a conceptual different
behaviour of unsteady boundary layers is observed as well as the phenomenon of dynamic
stall. Vortex interaction occurs in cases where the frequency of the flow fluctuation is close to
the frequency of the naturally shed vortices in the wake of the probe.

Circulation-Induced Lift

.
A continuously rotating circular cylinder immersed into a uniform free stream generates a lift
force proportional the angular velocity. This effect is referred to in the literature as the
"Magnus"-effect and can be determined analytically. The general formulation for the local non
dimensional pressure c¢p for any point on the cylinder's surface can be derived from the
tangential velocity v at an angle ¢ relative to the oncoming flow vector when superposing a
doublet and a circulation in the potential flow theory.
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v 402 sin2p +4u .1 ¢sin @ +(r )’
=l =t 2
s, ug,

Vo=-2Uo - SINQ-T-¢

with 2 u. sin @ as the quasi static and r ¢ as the "dynamic" term. Assuming a circular cylinder
being subjected to a sinusoidal angular oscillation

o (£) = o - sin (ot)
& (t) = - - cos (o)
the time dependent pressure coefficient ¢p (t) becomes
4uZ sin?(go+ o () +4uLro (D) sin(gp+ o ®)+ (ra ©)?

cp®=1-
ul,

for a point under @p from the position of zero angle of attack at o (t) = 0°. In figure 4-1 part A
the so determined pressure coefficient is plotted versus a (t) at a forward facing point: ¢g = 0°
for total pressure and one under an angle of @ = 45° or -45°, respectively, for yaw angle
measurement. Part B shows the theoretically resulting misinterpreted flow angles Atter at o0 =
0° for the non dimensional description of the angular oscillation

in
cpa) - ¢ i ~ sy ~
Alipy= P12(t) - CP12, static k- 4 - ome k- 1
dcpl2, static Sil‘ll ﬁ
dot %=0 2 lo=0

according to chapter 3.2 for a circular cylinder with two sensing holes located under @ = £ 45°
from the forward facing point.
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Figure 4-1  Effect of circulation on pressure on a circular cylinder for non viscous potential
flow theory. A: pressure coefficient ¢cp for three points on the surface of the
cylinder located at pg= 0 and Qo= £ 45° from the stagnation point for the
oscillation parameters ¢ = 30°and k = 0.1 and B: resulting error-angle in yaw-
angle measurement for different parameters of oscillation
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The slope and sense of rotation of the dynamic pressure coefficient in part A of figure 4-1 is in
good qualitative agreement with the experimental findings, although in the case of the circular
cylinder highly overestimated. Note that from the equation of the angular motion it can be
derived that the pressure term due to circulation leads the quasi static value by a phase of n/2. In
part B the error-angles Aciey are increasing linearly with both frequency and amplitude of
oscillation, which is in accordance with the qualitative interpretation of the results in figure 3-8.

Dynamic Boundary-Layers, Moving-Wall Effect

Several authors (e.g. TELIONIS 1981) found that in dynamic flows Prandtl's classical law for
boundary layer separation loses its validity. Whilst for static flow conditions the boundary layer
will separate when the wall-shear-stress becomes zero, thin layers of reversed flow may exist in
dynamic flows without disturbing the "outer flow". Generally, in unsteady flows a delay of
flow-separation can be observed (McCROSKEY 1977, NASH/SCRUGGS 1978, etc.). For
higher Reynolds numbers the effect of the "moving-wall” plays an important role in the
dynamic process influencing the boundary layer transition. Due to the smaller relative velocity
between fluid and surface on the downstream moving wall flow transition is delayed whilst on
the opposite side it is promoted.

The lift generated by uniformly rotating circular cylinders as a function of the ratio between
peripheral and free stream velocity is shown in figure 4-2. The long the boundary layers remain
laminar the positive lift for rotating cylinders is maintained (curve a in figure 4-2), but severe
changes in the generation of lift are observed, when above the subcritical flow regime (Re >
103) boundary layer transition occurs (ERICSSON 1980).

9
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041, d =Re=3.7- 106
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02 04 06 08 1.0 U 21Ue

Figure 4-2  Lift of a uniformly rotating circular cylinder versus peripheral velocity for
different flow regimes, adapted from ERICSSON

&

These strong effects of the "moving-wall” for circular cylinders are certainly associated with
altered conditions for flow separation on the circular cylinder due to earlier or delayed
transition. In order to investigate whether the "moving-wall"-effect is also observed when the
separation point remains fixed at the trailing edge of probes, experiments were performed for a
60°-wedge type probe in the higher Reynolds number range. To avoid too high free stream
velocities and hence too high oscillation frequencies in the experiment a second probe was
manufactured by forming a metal sheet around the circular cylinder (figure 4-3).
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Figure 4-3° Probe geometries for experiments with higher Reynolds numbers

In spite of the different probes used in the experiment for Reynolds numbers in the range
20'000 < Re < 80'000 the results show no significant different dynamic calibration data (fig. 4-
4). Only by increasing the Reynolds number to Re = 160'000 a distinguishable change in the

characteristics is observed (fig. 4-5).

dynamic pressure coefficient cp,,

S [ ipmbénr] . JLDfBERE 2 T1 [T TpiobEni 2
> o Re = 201600 TRE =401000

-50 =25 0 25 50°-50  -25 0 25 50°-50 -25 0 25 50°
yaw angle o [°] yaw angle o [°] yaw angle a [°]

Figure 4-4  Calibration data for the 60°-wedge rype probes for different Reynolds numbers
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Figure 4-5 Calibration data for the 60°wedge type probe no. 2 in the range 40°000 < Re <
160000

Inertia (added-mass effects)

The effect of inertia can best be explained by considering a sphere subjected to a flow
fluctuating in magnitude, as reported by KOVASZNAY et al. (1981). They found that the local
pressure measured on a sphere 1s the sum of a term proportional to the time variant stagnation
pressure p ¢2/2 ("quasi static") and a "dynamic" term proportional to the acceleration of the
fluid de/dt

_ pc(? de
p(t)—pm*'w‘\T—+Bpadt ®

with constants A and B being a function of the peripheral position on the surface. For a
sinusoidally fluctuating flow vector (in magnitude) as depicted in figure 4-6, the term
proportional to dc/dt always leads the term proportional to p ¢2/2 by ®/2.

I
+Z i
- <
C((Ot)—co(1+C0cos(c0t)
N b=
o %itiz-m?:sin(mt)

= - ®Ccos (mt-i-lzﬁ)

Figure 4-6  Velocity and acceleration for a sinusoidally fluctuating flow

By introducing the non dimensional relations for the oscillation the pressure coefficient cp (wt)
which 1s registered by the probe can be determined as

i.
p(wt)-p. A B ancgsm(mt)

S

1+ c c:os(oot))2
2 Co
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with pe considered to be constant. For the stagnation point of the sphere KOVASZNAY et al.
determined by numerical analysis and experiments the coefficients in the equation to be A =
1.0 and B = 1.5.

The coefficient cp (wt) of the stagnation pressure for different parameters of the fluctuating flow
vector is shown in figure 4-7 (¢/co = relative amplitude and k = reduced frequency). Choosing
the denominator of the equation above to be the time variant stagnation pressure is, in this case,
advantageous since the error in total pressure measurement is directly represented by the
difference between the dynamic and quasi static term.

cp (wt) dynamic term
2
| k=015 | — Y quasistatic term
0.05 0.10 - %
1 .. PI s SO e S PP Suuurnu s SR | et S (Dt
] 2 ]
04  C/e, =025 1 k=01

Figure 4-7  Dynamic pressure coefficient cp for total pressure measurement with a sphere in
a fluctuating flow (magnitude)

For rotational oscillations inertia-effects will occur in an analogue manner, when the fluid is
displaced by angular accelerations of the relative incidence of the flow.

Dynamic Stall

According to CARR/McALLISTER/McCROSKEY (1976) the phenomenon of dynamic stall
for NACA 0012-profiles occurs due to a separated vortex propagating rearwards from the
leading edge, resulting in transient pressure distributions along the surface of the profile
promoted by the bursting of a laminar separation bubble (BEDDOES 1980). Classical dynamic
stall effects occur only in cases where the static stall angle is exceeded.

The effect of dynamic stall can best be identified by flow visualisation. For the 60°-wedge
probe a series of flow patterns is presented in figure 4-8, obtained in a closed-loop continuous
flowing water channel. While for wt = 0° (@t denoting the angle of the driving mechanism for
one period of 360°) the flow on the probe is fully attached, a growing protuberance can be seen
at ot = 50°. At ot = 90° the vortex has grown larger but is still laminar. From the chordwise
pressure distribution, in figure 4-9 plotted over one period of oscillation, the minimum pressure
peak at a location l/fc = 0.25 can be seen at this time. The minimum pressure at I/c = 0.50 is
associated with the downstream propagating vortex at ot = 130° when the vortex covers almost
the whole suction side of the probe. Within a very short time period (125 < wt < 135°) the
centre of the vortex has proceeded from lfc = 0.50 to 0.75 indicated by the minimum pressure
peak atl/c =0.75.
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ot = 0° (o = 0°) t = 50° (o0 = 35°) wt = 90° (¢ = 45°)

< e betd

ot = 130° (o = 35%) ot = 160° (o = 15°) ot = 180° (0. =0°)

Figure 4-8 Visualisation of the flow around an oscillating probe (wedge 60°); Re = 5'000;
flow from right to left for o0 =45k =0.1

Cp1

= Ye=075 025

Figure 4-9  Chord wise non dimensional pressure distribution on the 60°wedge probe for
one loop of oscillation; & = 45° k = 0.1 for three chordwise positions lic =
025,050 and 0.75 (lic = 0 = leading edge; l/c = I = wrailing edge)

- leading edge

Even when facing a very strong pressure gradient (40° < ot < 160°) in dynamic flow conditions
the flow does not separate due to the dynamic response of the boundary- layer described earlier.

The significant difference between static and dynamic (& =45° k=0.1at wt = 90% flow
conditions is illustrated in figure 4-10. While for static conditions the flow is fully separated in
the dynamic case the flow reattaches behind the laminar separation bubble.
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Figure 4-10 Flow conditions for static (top) and dynamic flow ar maximum incidence o =
45°

From a sequence of video record the extension of the vortex over the suction side of the probe
for the same oscillation parameter as in figure 4-8 was determined (figure 4-11: white dots).
The shaded areas denote observed transition of the flow in the range 0° < wt < 100°.
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Figure 4-11 FExtension of the vortex over the suction side of the probe (dark shaded area) for
the angle of the driving mechanism ot and corresponding incidence angle ¢, &
=45%k = 0., trailing edge of probe at lic = 0

Included into the graph are the independently (towing channel) measured pressures on the
probes such as local stagnation points and minimum pressure peaks due to the passing vortex
from which the mean velocity of vortex convection u¢ = 0.3 1. can be determined.

The occurrence of this severe type of stall is undoubtedly coupled with the formation of a
laminar separation bubble at the leading edge when a probe with a sharp Jeading edge is inclined
rapidly beyond its static stall angle, The mechanism of the development of the bubble is due to

an influx of fluid from the adjacent stagnation point when the pressure drops on the suction side
of the probe.
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In order to reduce the dynamic stall effects a wedge probe with the same total included angle
(60°) but manufactured with a radius of the leading edge of r/c = 0.2 (¢ = chord length) was
dynamically calibrated (figure 4-12).

yaw angle [°}

Figure 4-12 Comparison of dynamic calibration data for a 60°-wedge probe with A: sharp
leading edge and B: rounded leading edge ric = 20%

Note that the probe with a radius r/c = (.2 does not only prove to be almost insensitive to
dynamic stall but generally exhibits much better dynamic calibration characteristics.

Interesting were the findings that for a free ending probe (sharp leading edge) the effects of
dynamic stall are still present but remarkably reduced compared to the two-dimensional probe
(figure 4-13).

Figure 4-13 Comparison of dynamic calibration data for a 60°-wedge probe. A: two
dimensional (aspect ratio Lid = 15, end plate) and B: free ended (d = probe
diameter)

Vortex Interaction )
Coupling of shed vortices occurs in cases when the frequency of the flow's fluctuation is close
to the natural shedding frequency of the vortices. For conditions where the shedding frequency
of the vortices in the wake is completely driven by the forced motion of the probe is called
"synchronisation". From the power spectra recorded for the configurations tested
"synchronisation"” was identified (figure 4-14).
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Figure 4-14 Vortex-synchronisation for the parameters of oscillation (amplitude and reduced
Jfrequency) for the 60°%wedge probe (sharp leading edge)

Although for high amplitudes of oscillation the synchronisation region covers a wide range of
frequencies, for all the configurations tested, a tendencial change in the dynamic calibration data
was observed only when the frequency of oscillation was very close to the natural shedding
frequency of the vortices formed in the wakes of the probes (0.175 < k < 0.25). In figure 4-15
the distinctive change of dynamic calibration data when k = (.2 is presented for the example of
the oscillating circular cylinder with the resulting error angles, which are significantly higher at
k = 0.2 compared to k = 0.1 and 0.3 respectively.
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Figure 4-15 Dynamic calibration of a circular cylinder for three different frequencies of
oscillation 0.1 < k< 0.3 and a0 =15°



19

5 Modelling of Dynamic Effects

The modelling of dynamic effects means the description of the dynamic calibration data based
on the known true quantities (quasi static) of the flow vector, From the experiments it has been
found that within limits the dynamic effects show a systematic increase with amplitude and
frequency of oscillation. Qualitatively, from chapter 3.3, different dynamic effects have been
identified but the magnitude of their contribution to the dynamic response of the probe in the
measurement is unknown. While e.g. circulation will act proportional to the angular velocity of
the probes during the experiments, inertia will occur due to angular accelerations of the forced
motion. Dynamic stall and vortex interaction have to be considered as the limits of the
modelling.

The modelling described in the following is of empirical character. By adding numerical
constants to the first (e.g. circulation) and second derivative (e.g. inertia) of the angular motion

2
CP12, modelled (O1) = €P12, staic (W) +C %% () +Co ‘dﬁ (ot)

the dynamic response of the oscillating probe (60°-wedge) can be modelled using a least
squares approximation (figure 5-1).

CP1;
0.8 - Cpstatic
i wedge probe 60°
0.4 -
] oo
] measured 2n

modelled

Figure 5-1  Modelling of dynamic effects for the 60°-wedge probe, o =11.25%k= 0075

Due to the phase shift of n/2 between ¢ and do/dt and 7 between o« and d2a/dt2 in the
experiment, the effects due to e.g. circulation and inertia will dominate the dynamic response of
the probe to the forced oscillation at different stages of the motion.

At oo =0° during the oscillation the effect of inertia should become O since the second derivative
of the motion d2a/dt?2 = 0. In this case only differences between dynamic and quasi static
calibration data due to circulation should be present, i.e. the resulting error angles would show
a linear relation with respect to the amplitude o and reduced frequency k of the oscillation. On
the other hand, when ot = o where dot/dt = 0, the resulting error-angles due to inertia should
become a function of ¢ and the squared reduced frequency k.

For a number of oscillation parameters the mean values for the constants Cg and Cg were
determined accordingly to the equations given above and the modelled error-angles Aoter as a
function of o and reduced frequency k compared to the experiment (figure 5-2).

A er=Cg - k- a,ataz()for(nt=()and 180°
A o= Cs - k2 - @, at o =+ & for @t = 90 and 270°
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Figure 5-2  Error angles due to dynamic effects at ax = 0°and 90°for the 60°wedge probe

The good agreement between the modelled error-angles and the experiments within the range 0
< k < 0.175 substantiates the linear relations between the error-angle and o and k at ot = 0° (o
=(°), although the bending of the curves indicates weak non-linear dynamic effects. Despite the
scatter of the experimental data the tendencial agreement between the modelled error-angles and
the experiments can be seen clearly at wt =90° (0 = o).

6 Conclusions

From the static aerodynamical point of view the ideal probe design will be a compromise
between the different aspects shown in chapter 2. For various applications yaw meters
indicating the true static pressure of the free stream are desirable, although in most applications,
where probes are thoroughly calibrated, a clear relation of Ky as a function of Mach number can
be determined. Additionally, advantages like the high sensitivity of sharp wedges are far
outweighed by disadvantages associated with errors arising from exceeded calibration ranges
during measurements.

In the experiments (dynamic calibration) the fluctuation of the relative incidence angle to the
probes was simulated by moving oscillating probes in a fluid at rest, while in turbomachines
stationary probes are subjected to a fluctoating flow. Although, according to literature, there s
from the kinematical point of view no difference between the two cases the experiment will
hardly represent the true flow conditions in every detail. However, one shall assume that the
gross flow patterns will be the same when the flow in the turbomachine rapidly changes its
angle relative to the probe. The conclusions to be drawn from the experiments are that for given
flow conditions in a turbomachine the maximum incidence angle of the relative flow vector
must not exceed the dynamic calibration range where modelling of the dynamic effects is
feasible - this is achieved by choosing a probe geometry where no dynamic stall occurs which
takes place when the static stall angle is exceeded. Furthermore it has been found that the long
no vortex interaction (k = 0.2) occurs, the dynamic error is directly to be related to the non
dimensional frequency parameter k and thus to the probe size. Even when probe size is fixed,
e.g. for technical reasons, still the possibility is given to apply probe geometries which are
affected by an order of magnitude less by dynamic effects.
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