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SUMMARY

A technique for the measurement of mean velocity and Reynolds stress components with single
sensor hot wire probes in compressible flow is described. The technique has been developed for the
analysis of the three-dimensional turbulent flow downstream of turbine cascades in a wide velocity
range, from incompressible to high subsonic flow.

This paper describes the method for the analysis of the hot wire signals, the calibration and
measurement procedures and the problems encountered in the measurement of high velocity flows.
The mathematical aspects of the numerical solution are examined and a detailed uncertainty analysis
for the Reynolds stress measurement is given.

1. INTRODUCTION

Accurate knowledge of complex three-dimensional turbulent flows is often required for efficient
design of many industrial devices, especialy in aeronautical and turbomachinery applications.

After the works of Fujita and Kovasznay [1] and Bissonnette and Mellor [2], a number of single
sensor hot wire techniques have been developed for the measurement of mean velocity and Reynolds
stress components in steady or periodic unsteady flows (see for instance [3-10]). All these techniques
are based on the directional response of a heated wire exposed to a cooling flow with at least six
different orientations. The methods differ each other for several important features such as the
number of probes utilised, the way of probe insertion in the flow and the number of probe angular
settings required for one complete measurement.

While the determination of mean velocity components is relatively straightforward and the
measurement is in general accurate, the probiem of measuring the Reynolds stress tensor is not
simple, even in the case of incompressible flow. The mathematical aspects of a single sensor hot wire
technique for incompressible flow, previously developed by the authors [10], are critically examined
and some recommendations for its practical application are proposed. Then the problem of
measurement of mean velocity and Reynolds stress tensor in compressible subsonic flows is discussed.

2. HOT WIRE ANALYSIS FOR INCOMPRESSIBLE FLOW .

For a constant temperature hot wire anemometer without linearizer, the istantaneous effective
cooling velocity (g+¢’) is related to the istantaneous anemometer output voltage (&+e’) by the King's
heat transfer law:

(e+e’)?=eg+B(g+q")" (H

where eg, n, B are costants determined from the wire calibration.
The quantities  andVe? are the ones directly measured by means of a mean value and a true

rms voltmeter. The following relationships for ¢ and ¢'2, obtained from eq.(1) by application of the
binomial theorem [11], can be adopted for relatively low turbulence intensity (less than 15%):

_ 22— o2 1/n — _ -0 =57
q=( o 1+£ ,f : +g_(1 n) _ee : 2
B n\e“—eg n n (92"'9(2))




g 2=[28/(nBg"")]"e? (3)

The hot wire output depends not only on the flow speed, but on the wire orientation with
respect to the flow as well. The Jgrgesen’s law [12] relates the effective cooling velocity to the
velocity components uy,uy,uy, in the wire coordinate system (figure 1):

q’=u?+k*u?+h’u? (4)
where h and k are sensitivity coefficients to be found by the probe directional calibration.

For a certain angle of rotation ¢ of the probe about its stem, the velocity components in the wire
coordinate system (t,n,b) can be transformed into the fixed coordinate system (xi,X3,x3) by

u,= u,cosa+(uzcos¢—ussin¢)sina
u,=—u,sina+(u2cos¢—u3sin¢)cosa
U,=U,sing+uzcos¢ ¢))

To get a direct relationship between the cooling velocity and the velocity components uy,us,ug
in the fixed coordinate system, one substitutes eq. (5) in eq. (4) and obtains

q’= A ul+ Apui+ Aggui+2A U, Uy + 2A 15U, Ug + 2 A55U Uy (6)
where )
A, =cos’a+k’sin’a Ay =cos?¢(sin®a+k>cos’a)+h’sin’¢
Ags=sin?g(sin’a+k’cos’a)+h’cos®p A12=[(l—k2)cos¢sin2a]/2"
An=-[(1-k?)singsin2a]/2 Ayg=—sin2¢(sin’a+k’cos*a-h?)/2

are known coefficients, function of the wire angle o, of the rotation angle ¢ and of the Jgrgesen’s
sensitivity coefficients # and k.

2.1 Solution for mean velocity components

Time averaging eq.(6) yields a relationship between mean cooling velocity g and mean veldcity
components i,ig,Uz, for each angular setting ¢ of the probe:

G%= A, U2+ Aplia+ Aggiz+2A U, U, +2A 30U, Uy 2 A3l uy+ turbulence terms (V)

In principle three readings with a slanted probe should be sufficient to determine the three
unknown velocity components by solving a 3x3 non linear system of algebric equations. In practlce, to
obtain an acceptable accuracy (errors lower than + 3% in the velocity and lower than # 2 deg in yaw
and pitch angles), one has to solve an overdetermined system of at least six non linear equations.

2.2 Solution for Reynolds stress components

When uy, us, ur’, ug', ug’ are at least one order of magnitude smaller than the primary velocity uy, -
eq.(6) can be rearranged in the form

g+q =\Anl, [1+4]'7 (8)
After expansion by the binomial theorem and linearization of eq.(8), an expression for the

fluctuating coohng velocity can be obtained by linear decomposition. Squaring and time averaging the
fluctuation ¢’ yield an equation for the six Reynolds stress components:

A? A2, A, A

g ANy — 23—y N 12 23—————— ————s

q = Uy "+ Apuy "+ ——ug "+ 24U, U, +2_—_—A U, +2 AUy uz” (9)
22 22 22
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If yaw and pitch angles are greater than 10 deg, the drastic simplifications- utilized for obtaining
€q.(9) are not valid. In this case it is more convenient to rearrange eq.(6) in the form:

G+q = AN L2+ Aplil+ Agglil+2A 50 Uy +2A 3l Ug*+ 2A5l,05 [1+4]'7 (10)

Acting as before, but neglecting only the differences (u'u’- ui’uy’), yields the following equation
for the Reynolds stress components:

q ?=(Bfu,?+Blu, ?+Biuy *+2B,B,u, Uy’ +2B,B,U, Us +2B,B3U, U )/ B (11)
where
B,= A“Ef+A22_LZ§+A33ﬂ§+2A,2ﬂ1E2+2A,3ﬁlﬂ3+2A2352ﬂ3

By=Au,+Ajuy+ Azl By= AU+ Ay, + Ayl By=Agu, + Ayl + Agzlis

The B; coefficients of eq.(11) are functions of the mean velocity components, while the coefficients of
€q.(9) are not dependent on them.
Eq.(11) has been previously developed by Bridgeman, Sieverding and Borsboom [8].



For N angular settings of the probe, eq.(9) or eq.(11) gives a system of N algebric linear
equations for the six unknown Reynolds stress components. In principle only six measurements,
obtained from a slanted probe, are sufficient to solve the problem. In practice, even with a double
number of data readings the results obtained are of scarce quality, expecially for the transverse and
spanwise normal stress components.

Figure 2 shows the distribution of the coefficients of the Reynolds stress components versus the
rotation angle ¢ for a slanted wire probe and a straight probe with uy=us=0 and k=1, k=0 (in this case
eq.(9) and eq.(11) are coincident)._For the slanted probe the coefficient of the normal Reynolds
component in transverse direction ug’2 is about one order of magnitude lower than the other ones.
Therefore this probe is rather insensitive to the ug’2 component and a least square solution of the
overdermined system of equations may be achieved with large errors in that component. The straight
wire probe is not sensitive to uy’2, uy’uy’, uj'ug’, but it is fairly sensitive to the uy’2, ug'2, us'ug’ stress
tensor components.

A measuring technique was therefore developed, based on both straight and slanted wire probes
outputs. Three measures are taken with a straight probe at ¢ = 45, 90, 135 deg and several measures
with a slanted probe for more than five angular positions in the range ¢ = + 90 deg. -

The signal analysis is performed by solving separately the two systems of equations for the two
probes. The ug’2 component from the straight wire probe data is substituted in the overdetermined
- system of the slanted wire probe, that is solved with a least square procedure to obtain the remaining
five unknown components. The comparison of the two stress components u3z'2 and uy'ug’, obtained by
both the probes, gives a sign of the measurement consistency.

2.3 Least square solution of the overdetermined systems of Reynolds stress equations

: If one uses only a slanted probe, the overdetermined system (11) of N linear algebric equations
for the six unknown Reynolds stress components can be rewritten as

6
> CauRi=qr ” k=1,N (12)
i=1

with k index of the probe angular setting, i index of the Reynolds stress component R and Cj
influence coefficient. In matrix form the system is

C-R=b

with C the N x 6 coefficient matrix, R the solution vector and b the vector of constants.
The least square technique reduces eq.(12) to a system of six equations in the six unknowns R;
N 6 N
Y Y CuRiCu=) Cudr” i=1,6 (13)
k=1j=1 k=1
or

A*R=C""b

where A = CT-C is the 6 x 6 matrix of the normal system.
For the proposed procedure based on the use of both slanted and straight wire probes, the
overdetermined system of N equations in five unknowns for the slanted probe data is

iCikR,-;qT?-CMRC, k=1,N (14)
or "
C,"R=b,
Applying the least square technique yields:
ki icikRiCik=kiCik(—q_:n—C5kR6) i=1,5 (15)
o1 = "

or
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with 4; = C;T-C; 5x5 matrix of the normal system.

The determinants of matrices 4 and A; are calculated in function of the number N of the probe
angular settings (or data readings per measurement), for different values of A¢ and the results are
shown in figure 3. Matrices 4 and 4; are not singular, but in case of few angular settings they have
small determinants, that increase as the number of readings increases. Det(4,) is always larger than
Det(A4).

An index of the ill-conditioning of a system of equations is represented by the condition number
defined as the product of the norm of the matrix of coefficients for the norm of its inverse

K(Ay=114ll-]]47]|

This number should be, as long as possible, near to the unity, to avoid ill-conditioning.
Furthermore a perturbation procedure shows that the relative change in the solution vector can
be great as K(A) times as much as the change in the vector of constants

l|6b]] [|6R]] [|6b]]

——/K(A) S SK(A)Y ———7

oql /= TRT =KD )
The condition number has been calculated for both matrix A and 4; in function of the number of
probe angular settings adopted for one measurement and of the angular variation A¢ for each probe
rotation.

Figure 4 shows that the procedure based on the use of two probes gives rise to a

better-conditioned system and that the well-conditioning of the two systems depends on the width of
the angular range from which the data are taken, rather than on the number of probe readings.

2.4 Sensitivity analysis of the normal systems of equations

The foregoing analysis, based on the condition number, simply bounds the relative error of the
solution vector caused by a change in the vector of constants. To quantify the effect of errors in the
reading of the hot wire rms outputs on each Reynolds stress component, a sensitivity analysis has
been performed. '

In case of measurements taken only with a slanted wire probe, by differentiating system (13)
with respect to each root mean squared fluctuating output, one obtains N systems of 6 linear
equations with a total of 6xN unknowns dR;/dey’. Assuming a random distribution of £ 1 mV error
over each fluctuating output ¢’ and taking the average over 1000 events, one gets an estimation of
the mean error in each Reynolds stress component in percent of 7,/p.
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IR, 107 2
T /10=(r /p)lo3Z X[ ”’d(*lmv)} ey =vex i=1,6  (16)

A similar procedure can be applied for the measuring technique based on the use of two probes.
In that case one has to differentiate system (15) with respect to each e’ and Rg and obtains N+l
systems of 5 linear equations with 5x(N+1) unknowns OR;/d¢’ and 8R;/8Rg. As before, one can
estimate the error on each Reynolds stress component in per cent of 7/p:

OR; 1 100 IR, 2__
Tw/p~('['w/p)lo3z Z( rnd(:tlmV)) (EARG)L_I’S (17)
1 103
Re= 153, Z Z - rnd(ilm\/))

The results of figure 5 show that the procedure based on the use of two probes not only reduces
considerably the error on the normal stress component in transversal direction ug’2, as expected, but
also in u;’2 and u;’uy’ components. A number of three readings for the straight probe and of nine
readings for the slanted probe in the range ¢ = + 80 deg appears adequate to keep errors within
reasonable limits.

2.5 Probe directional calibration

Due to large condition numbers, the solution of system (15) is rather sensitive to small changes
in the matrix of coefficients. Therefore a carefull calibration of the directional factors # and k is
needed to reduce systematic errors.

Generally, if the measurement is performed aligning the probe stem with the stream direction,
the pitch factor % is assumed to depend on the pitch angle ¢ and the yaw factor k on the yaw probe
angle B [12] (figure 6a). In this case the probes are not sensitive to the roll angle ¢ and the calibration
can be obtained simply by rotating the stem of a ¢ angle in the plane of the prongs (thus inducing a
B variation) and in the plane perpendicular (resulting in a ¥ variation), as illustrated in figure 6b.

When the stem is perpendicular to the mean flow, the probe presents roll sensitivity because the
prongs assume different orientations with respect to the flow during rolling from -90 to +90 deg.

Slanted + Normal Probes Ap=20° Slanted Probe Ap=20°

100 o
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Figure 5 - Error in Reynolds components for a random distribution of £ 1 mV error in rms output
voltage (7/p = 1 m/s) ; ’
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the probe perpendicular to the mean flow.,

Therefore the directional calibration has to be performed reproducing conditions which are
representative of the ones prevailing during the flow measurements, with variations of both roll angle
¢ and pitch angle 9 (figure 6¢).

Typical results of this directional calibration are shown in figure 7. Negative values for k2,
apparently unrealistic, are usual for slanted probes, because of the cooling effect of the inclined
prongs when the flow is normal to the wire.

2.6 Measurements in a two-dimensional incompressible turbulent boundary layer

The two-dimensional incompressible turbulent boundary layer developing on the lateral wall of a
low speed wind tunnel has been used to get a direct evaluation of the hot wire technique for
Reynolds stress measurement. '

In figure 8 the results show a reasonable agreement with the reference data of Klebanoff [13].
As expected, the normal as well as shear stresses associated with the velocity fluctuations
perpendicular to the surface present a higher degree of scattering according to the foregoing equation
sensitivity analysis and to the estimates of uncertainty of Lofdahl [14].
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3. HOT WIRE ANALYSIS FOR COMPRESSIBLE SUBSONIC FLOW

The heat transferred from a heated wire to the flow is expressed, in terms of dimensionless
groups, by the following law [15}
Nu =f(Re, 1) (18)

where Re = pud/p is the wire Reynolds number and 7 = (Ty-T.)/T. is the temperature loading.

The ratio of the temperature T, and the total temperature T} is a function of the Mach number
[16]; it can be obtained by performing resistance measurements with the unheated wire placed in a
flow where total temperature and Mach number are known.

For a constant temperature anemometer, assuming adiabatic flow, the temperature loading 7 is
nearly costant and eq.(18) reduces to a linear relationship between the Nusselt number and the square
root of the Reynolds number [17]. This relationship can be rewritten in terms of hot wire output
voltage and mass flux to obtain an equation equivalent to the King’s law (1) for the case of
compressible adiabatic flow:

e?/(T,-T,)=A"+B (pu)" (19)

w

3.1 Solution for mean velocity components

By applying the same procedure employed in the case of incompressible flow, one gets a
relationship for the mean effective cooling mass flux in function of the anemometer outputs for each
probe angular setting:

(&= a\'" 1 &7 2(1-n) e%e’? ,
pq=(——~———,, L+=| 5 +-( )_2 — (20)
B n\e?- A n\ n J(e?-A")

with A= A'(T4-Te) , B'= B(Ty-T.)

Using a modified Jgrgensen law with mass flux components in place of intrinsic velocity
components and carrying out the same analysis as in the incompressible case yield a system of N non
linear equations in the three unknown puy, pus, pus
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pq’= A,,pu12+A22pu22+A33pu32+2/1,qu,pu.2+2A,3pu1pu3+2A23pu2pu3 (21)

If mean total temperature and static pressure are known from separate measurements and the
mean mass flux is approximated with the product of density and velocity mean values, the velocity
components u;, static temperature T and density p can be calculated from the known values of mean
mass flux components by using the relationship between total and static temperature and the perfect

gas law:
T —1{ pu,?+puz’+puy’
:[_-5:1+72 (p‘ ’;522 PUs \rT (22)
5=p/RT | (23)

3.2 Solution for Reynolds stress components

According to Kovasznay [15], the fluctuating voltage signal results from a linear combination of
density, velocity and total temperature fluctuations:

ea pa uz Tl'
_—=85 =+85 —+S5 ;= 24
P pp uu TT! ( )

If M > 1.2 (Morkovin [16]) or also if M < 1.2 in case of 7 > 0.5 and Re > 20 (Horstman and Rose
[18]), the density sensitivity coefficient S, is equal to the velocity sensitivity coefficient S, and eq.(24)
becomes: : ‘

A LY MNP (25)
e ou T,

For temperature loadings 7 larger than one, the total temperature coefficient St becomes smaller
than the mass flux coefficient [18]. Under these conditions and for nearly adiabatic flow (where
mean total temperature gradients and, therefore, also total temperature fluctuations are small) the wire
senses only the mass flux fluctuations. As for the incompressible case a relationship holds between the
mean squared fluctuation of effective cooling mass flux and the mean squared fluctuation of output
voltage

Sy - .. n- 2—
(pa) *=[28/(nB (o)™ ")) e (26)
and one can derive a linear equation that relates the mean squared fluctuations of effective cooling

mass flux to the six temporal correlations of the fluctuating mass flux components in the -fixed
reference system, for each probe angular setting:

(pq) *= Cll(Pul)’2+C22{Pu2), +Calpusg)’ +C12(pu,)'(pu2)'+

+C13(PU1)'(PU3)'+ng(ﬂuz)’(Pua)’ , (27)

System (27) can be solved with the same numerical procedure as in the incompressible case to get the
six unknowns mass flux correlations (pu;)’(pu;)’. _

At this stage one has to separate the mean squared density fluctuations p’2 and the Reynolds
stress components u;'y;’ from the mass flux correlations. The first step is approximating the six mass
flux correlations in terms of mean squared density fluctuation, fluctuating velocity and density-ve-

locity correlations: ‘ _
(pui)’(puj)l=?2i2iaj+ﬁaip u; +pu;puy +puu; (28)

The density-velocity correlations can be expressed in terms of the fluctuating velocity correlations by
using the following relationship between the istantaneous values of total and static temperature




3

> (w?+u,?+2m,u,) (29)
p i=1

Multiplying eq.(29) by uy’, time averaging the resulting equation and assuming negligeable total
temperature fluctuations (adiabatic flow), one obtains a relationship between the fluctuating
temperature-velocity correlations and the Reynolds stress components:

. . 1
T, +T, =T+T" +
2

— |
T u; =~E— Zuiui u; (30)
Pressure, density and static temperature fluctuating components are related by the perfect gas law:
. .7
L (31)
p p T

Assuming that the relative pressure fluctuations are small, compared to the relative static temperature
and density fluctuations [18,19], and combining eq.(30) and eq.(31), one finally gets:
oy 3

ey P — s
U, == wu; u; ‘ 32
U pe LT (32)
Introducing eq.(32) in eq.(28) leads to a system of six algebric linear equations in the seven
unknown u;’u;’ and p’2.
pu;) (pu; ’=Enﬁiﬂj+52ui’uj’+_ [ Zu Uy U, +Uu; Zu u, Uy :l (33)

One more equation for ;’_5 in terms of ui ui’ is needed. By separating in eq.(29) fluctuating from mean
terms, with the assumption T’= 0, one gets

1 3. _
=-— Y (34)
C p i=1
Squaring and time averaging eq.(34) and combining it with eq.(31) yield
02 35
P T2 Z Z (35)

that is the seventh equation needed to solve the problem of determining the six Reynolds stress
components and the mean squared fluctuating density.
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Finally a direct inspection of the hot wire voltage output by means of an on line spectrum
analyzer is recommended to identify possible strain gauging phenomena, due to vortex shedding from
the support needles. Commercial single wire probes were found to be affected by severe strain gauge
effects when introduced with the stem normal to the main flow at high subsonic Mach numbers, as
shown in figure 10, where a sharp peak of energy is associated with a frequency of about 30 kHz.
The probes were therefore modified by reducing the needle lenght; by this way the energy peaks in
the range 0-100 kHz have disappeared. A low pass filter at 100 kHz was applied to cut high
frequency noise.

Reynolds stress measurements have been performed in two-dimensional turbulent boundary
Jayers developing on the lateral wall of a transonic wind tunnel for different Mach number ranging
from 0.3 to 0.8. The results shown in figure 11 are more scattered compared with the incompressible
results of figure 8 and present a trend for a slow decrease of the fluctuation levels with Mach
number. Nevertheless the overall distribution is in agreement with the measurements of Klebanoff
[13] in incompressible flow. This decreasing trend, shown also by the results of Kistler [19] for a large
Mach number range in supersonic flows, in our case is probably due to the fact that the boundary
layer is not completely in equilibrium, because of the streamwise pressure gradient in the upstream
contraction. This effect is increasing with the Mach number.

4. CONCLUSIONS

A hot wire technique has been developed for measuring mean velocity and Reynolds stress
tensor in turbulent incompressible flows. The analysis of signals from single sensor probes rotated
about their stems for different angular settings leads to overdetermined systems of algebric equations
to be solved with least square techniques.

A detailed ‘sensitivity analysis shows that the Reynolds stress system solution can be rather
inaccurate, if the data are taken from a not wide enough range of angular probe positions and that
the combined use of slanted and straight wire probes results in better-conditioned coefficient matrices
and, therefore, in a lower sensitivity of the solution to small changes in voltage readings. Authors’
experience suggests the need of an accurate directional calibration of the wire directional sensitivity
factors, expecially when the probe is introduced normal to the flow.

Classic assumptions, on which are based methods for determining temperature, density and
streamwise velocity fluctuations in turbulent supersonic and transonic flows, have been incorporated
in the described hot wire technique to extend it to the measurement of Reynolds stress components in
turbulent compressible flows. An algebric equation system has been developed, to separate the density
fluctuations from the Reynolds stress components in the six fluctuating mass flux correlations
resulting from the least square solution of the hot wire equations.

The technique has been verified in two-dimensional compressible boundary layers up to M=0.8
and has been used to study the three-dimensional turbulent flow developing downstream of turbines
cascades for different exspansion ratios.
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NOMENCLATURE

b, n,t wire coordinate system (figure 1)
Cp specific heat at costant pressure

d hot wire diameter

e . istantaneous hot wire voltage

h, k directional sensitivity coefficients of the Jgrgensen’s law
Hys boundary layer shape factor

M Mach number

n calibration exponent of King’s law
N number of probe angular settings
Nu hot wire Nusselt number
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D, Dt static pressure, total pressure

q istantaneous effective wire cooling velocity

R gas costant

Rey momentum thickness Reynolds number

T, T, static temperature, total temperature

T, wire equilibrium temperature

Tw hot wire temperature

Upytn Ut velocity components in the wire coordinate system b,n,t (figure 1)

Ueg freestream velocity

Uy,Ug,Ug velocity components in the fixed coordinate system x3,X3,X3 (figure 1)

U, wall friction velocity  u, = (7y/p)1/2

X1,X2,X3 fixed coordinate system (figure 1)

a wire angle :

B angle between velocity and n direction in nf plane (figure 6a)

~ ratio of specific heats

5 boundary layer thickness

& inclination of the probe stem during directional calibration (figures 6b and 6¢)

U viscosity

i density

T temperature loading

Tw wall shear stress

1) probe rotation angle about the probe axis

Superscripts

— time averaged

? fluctuating component
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