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Summary

To improve the periodicity and to reduce the number of blades in test sections of
rectilinear cascade wind tunnels flexible adaptive upper and lower walls are very
useful. The adaptive walls must be shaped to contours through a cascade flow field
of infinite length.

In the present paper a computational adaptation method is described which deter-
mines the required wall deflections from pressure distributions measured along the
flexible walls. This scheme is applicable for cascades with incompressible flows and
for low deflection cascades with compressible subsonic flows. The process can change
the inlet flow angle of the cascade to a desired value.

The verification of the adaptation scheme is shown for some theoretical examples.
Finally the design of a new adaptive wall test section in the wind tunnel for rectilinear
cascades (EGQG) of the DLR Géttingen is presented.
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influence functions, Egs. (6) and (7)
channel high

chord length

number of blades in the test section
strength of a doublet

radius

coordinates along the adaptive walls
pitch length

complex velocity vector

complex disturbance velocity vector
complex coordinate in the flow field

flow angle (measured from circumferential direction)
stagger angle

strength of a vortex

complex coordinate on the integration path

stagger angle of a row of vortices or doublets

free stream condition
homogeneous inlet flow
homogencous outlet flow
integration path

due to the cascade

due to the wall interference

number of the integration path, Eq. (2)

1. Introduction

Experimental investigations on rectilincar cascades are of great importance for the
design of axial turbomachines. A rectilincar cascadc is defined by unrolling a stream
surface of revolution through the blade ring of a stator or rotor, sec Fig. 1. The highly
three-dimensional flow in a turbomachinc is then reduced to a two-dimensional flow
field through a cascade of infinite length.



3-3

For experimental studies only a part of an infinitc cascade flow field can be tested in
a wind tunnel. So the upper and lower test scction walls form the boundaries of the
cascade in the circumferential direction. These walls are directly responsible for the
conditions of the flow field. Basically, there are two possibilities for reaching a good
flow condition (periodicity) in a cascade test section:

e In general, as in the wind tunnel for rectilinear cascades (EGG) of the DLR
[1], only straight upper and lower walls upstream and free shear layers down-
stream of the cascade represent the boundarics of the flow field. By mounting a
sufficiently large number of blades inside the test section (up to 15 profiles) a
nearly good periodicity in the middle of the cascade flow field is obtained.

e A new and not as yet applicd possibility of simulating a part of an infinite cas-
cade flow field is to build a test section with upper and lower adaptive walls.
These walls can be made of flexible steel plates which are deformed by a set of
motor driven jacks to any desired contour. With such an arrangement a very
good periodicity in a cascade test section is achicved and this allows the
reduction of the number of blades to at least just onc blade (one passage).

A new cascade test section with adaptive walls for the EGG was designed in the DLR
Institute of Experimental Fluid Mechanics in Géttingen [2]. In conjuction with such
adaptive or “self streamlining” wind tunnels computer codes for the calculation of the
adapted wall contours arc very important. In the past such codes were developed for
the application in conventional wind tunnels with two-dimensional adaptive test sec-
tions, see for instance [3]. Now a new computational code for adaptive cascade test
sections and its verification is presented in the first part of this paper [4]. The last
part gives a description of the adaptive walled EGG test section. '

2. A wall adaptation scheme for cascade test sections

“The principle of a wall adaptation scheme as described in [3] requires the measure-
ment of two independent flow variables at the adaptive walls, for example the tan-
gential and normal velocity components. An equivalent pair of variables are the wall
pressure and the wall contour from which the velocity components can be determined.
These flow variables are measured in an initial wind tunnel run and used as input for
the calculation of the adapted wall contours. Normally this adaptation is done iter-
atively with a new tunnel run with measurcd flow variables along the walls and new
calculated wall contours in every step. The iteration stops until the differences
between the wall contours before and after a step (wall displacements) are zero and
thus complete adaptation is obtained.

The wall adaptation method for cascade test sections which is described below is
based on a scheme as shown in [3]. But there is onc difference for the application of
both methods. In a conventional adaptive test section (for example with an airfoil) the
adaptation [3] is done to a flow ficld which passes into undisturbed parallel flow at
infinity. In contrast to that the adaptation in a cascade test section must be done to
a periodic cascade flow field of infinite length [4,5].
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2.1 General description

The starting point is a cascade test section with adaptive upper and lower walls and
any desired number of blades inside, see Fig. 2. It is accepted that the walls are not
adapted. The test section itself will now be continued along the cascade direction
(y-axis). This results in a conﬁguratlon of a cascade of infinite length with a periodic
arrangement of the adaptive contours in the distance n, - t. The upper and lower walls
are able to represent different contours in a blade channe] if there is a definite area
between them [4]. But it is also possible for both walls to form identical streamlines.
Then the area between the walls is reduced to zero (Fig. 2).

The flow field in Fig. 2 must be described by the potential theory [5] and is a super-
position of the cascade flow field, induced by singularities on the blade contours, with
the interference flow field of all adaptive walls, induced by singularities on the walls
or in the definite areas between the walls.

The wall interferences inside the whole cascade test section will now be calculated by
the Cauchy integral formula [4,6]:

oo
Wyi(z) = Z 7 ; é;((_(:; d¢, (1)

V=00
C
v

The integration paths C, with the complex coordinates {, enclose the adaptive con-
tours in Fig. 2. w, is the known complex disturbance velocity vector along these paths.
The components u, and v, of this vector can be dctermined from wall pressure dis-
tribution measurements which are obtained from an initial wind tunnel run. In the
far field upstream and downstream of the cascade constant flow conditions will occur,
and so the disturbance velocity w, along the parts of the integration paths which cut
the walls can be assumed as constant. Having the advantage that only singularities
inside the integration paths (on and between the adaptive walls) have an influence in
the Cauchy integral [4,6] only the complex disturbance velocity vector wy; induced
by the walls is obtained on the left side in Eq. (1). z is the complex coordinate in the
test section where these wall interferences have to be calculated.

With the equation
{,=Co+i-ven, -t (v=0,%1,42, .. +00) (2)

all points of the integration paths C, arc described on a qtraight line parallel to the
cascade direction (Fig. 2). Imcrtmg Eq. (2) into Eq. (1) gives after some transf-

ormations:
Wyi(Z) = <§w(¢) coth[( O”] d¢ 3)
n,

This is the base equation for the calculation of wall interferences inside a cascade test
section. The integration (in clockwise direction) has to be carried out only along the
integration path v = 0. After separating the real and imaginary parts of Eq. (3) we
obtain:
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Uwi = +m §(E1 - Ue + EZ'VC)'di —'(ﬁ(EZ'uc_ El 'Vc)'dn ’ (4)
P Lt C
1
VWi T 3Tt 3£(E2'U9“ E, 'Vc)'d£+§(El “Ug+ By ve)-dn ). 5
P oilc C |
The functions E, and E, can be calculated from:
sin(2n 1_2 )
Br= x— ¢ ) y—n .’ (6)
cosh(2n ) — cos(2n —)
p* t n, t
sinh(2n i_f )
Ey= - - (M
cosh(2n X ¢ ) — cos(2n Yy )
n, - t n, - t

Eq. (4) and Eq. (5) give the components Uy; and vy; of the wall induced velocity
vector wy; in the whole cascade test section from the known disturbance velocities u,
and v, along the adaptive walls, see Fig. 2.

Now the flow field in the test section is assumed to be a linear superposition of the
cascade flow with the interference flow of the adaptive walls:

U == Uer,g + Uwis (8)
V= Vias T Vwie 9)

Near the walls the velocities are known from measured pressure distributions
(u=u, v=v,). After calculating there the wall interferences uw, and vy, from the
Eqs. (4) and (5) the interference free disturbance velocities Uc, and v, of the cascade
are obtained from Eq. (8) and Eq. (9). With these interference free velocities stream-
lines can be integrated along the upper and lower walls which give the adapted wall
contours [4].

With these new contours a resct iteration step, i.c. a new tunnel run with measured
wall pressures and a new calculation of the adapted contours from the Eqgs. (4) to (9)
can be started. But it is shown in [3] and [4], that with the assumption of a linearized
potential flow field and only small wall displacements (between the not adapted and
the adapted contours), the adaptation can be achieved within one step. Then after the
first step the cascade flow ficld in the test section is wall interference free and the wall
induced velocities uy; and vy; which are calculated from the Egs. (4) and (5) in a
second iteration step must be zero.

It should be mentioned that with the assumption of a potential flow ficld the adaptive
walls as shown here (Fig. 2) arc only the boundaries of the inviscid flow. The devi-
ation of these contours from the “physical” adaptive walls is the displacement thick-
ness of the boundary layer which can be determined from known pressure distrib-
utions on the walls. So in every adaptation step with new measured pressure distrib-
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utions the adaptive contours must be corrected by the displacement thickness of the
boundary layer.

The above adaptation method is demonstrated for incompressible flow fields. By
applying the Prandtl-Glauert equation for rectilinear cascades [5] an expansion to
compressible subsonic flow fieids is possible. But then the scheme is restricted only to
cascades with low deflections and thin profiles (smail flow disturbances).

2.2 Test results

The validity of the wall adaptation method will now be tested on some theoretical
examples. These are simple cascade flow fields obtained by superimposing the dis-
turbance velocities of vortex or doublet rows with a uniform free stream flow field.

At first the flow field of a vortex in a straight channel is calculated from an alternat-
ing infinite row of vortices [4], see Fig. 3. The straight streamlines of this flow field
are then the upper and lower channel walls. By superimposing this configuration with
the flow field of an infinite doublet row [4] with the same spacing h, see Fig. 4, we
will obtain the flow field of a rotating cylinder inside a straight channel. The calcu-
lated disturbance velocities on the walls are then the measured mput values for the
wall adaptation scheme.

In the first example in Fig 5 the adaptation is done to an unstaggered row of rotating
cylinders. The upper diagrams show the disturbance velocities along the test section
-walls. The dashed lines represent the “measured” input values, i.e. the disturbance
velocities u, and v, along the upper and lower not adapted contours (straight channel
walls). The solid curves were obtained after the adaptation process with the Egs. (4)
to (9) and are the interference free disturbance velocities uc,, and v, of the rotating
cylinder cascade. From these velocities the wall deflections have been calculated
which are plotted in the last diagram in Fig. 5. The strcamline integration for these
adapted countours is started from the cascade front (s, =0, s, =0) upstream and
downstream into the flow field [4]. Because of the test section high h which is equal
to the pitch t of the cascade both adaptive walls represent identical streamlines. In the
far field upstream and downstrcam of the cascade the interference free velocities are
constant (Uc, =0, Ve, =const.) and a schematic velocity triangle can be drawn
(Fig. 5) which is a typical triangle for an impulse cascade [5].

Fig. 6 shows the adaptation to a 30 degrec staggered row of rotating cylinders. The
adaptation scheme needs a coordinate system parallel and perpendicular to the cas-
cade direction (see Fig. 2) which deviates from the coordinate system in Fig. 6. So
before and after the adaptation the velocitics and wall contours must be transformed
back and forth between thesc two coordinate systems. The interference free velocity
vector We, in the far field now has a component Uc,; = W, - Sin A in the x-direction
and a component Ve, = Wc, - €0s A in the y-direction. This leads to a schematic
velocity triangle for a deceleration or compressor cascade [5]. By inclining the cas-
cade front with a negative angle A, a velocity triangle and a simple flow field through
an acceleration or turbine cascade [5] will also be obtained.

In the previous examples the free stream velocity vector W, was set parallel to the
x-direction. But it is necessary to investigate a cascade under a desired inlet flow
velocity vector W, for which the correct direction and value of W, have to be found.



This process is shown schematically in Fig. 7. At first W, is set in the desired inlet
flow direction. Then the wall interferences and the cascade velocities will be deter-
mined with the equations in section 2.1 only for one point on the adaptive walls in the
upstream far field of the cascade (Fig. 2). From that we will obtain a velocity triangle
drawn with the solid lines in Fig. 7. Now the free stream vector W, is corrected to
W_ so that the inlet flow vector W, could be expected in the desired direction. The
measured disturbance velocities u, and v, along the adaptive walls must be referred
to as W_. Now a new calculation of the wall interferences and the cascade velocities
for the same point in the upstream far field gives a velocity triangle with the dashed
lines in Fig. 7 in which the inlet flow vector Wy deviates again from the desired
direction. This is due to the effect that the blade circulation I'p and so the cascade
velocity w, changes with the free stream vector W,,, [5]. Finally this leads to an iter-
ative scheme with a new change of W, in every step. After having found the right
free stream vector W_, for a desired inlet flow the complete adaptation method as
shown in section 2.1 could be performed.

In Fig. 8 the inlet flow vector W, for a staggered cascade of rotating cylinders is set
parallel to the x-direction. But now the circulation I' of the cylinders does not change
with the free stream vector W and so the above described iteration process has
ended after the first step. The disturbance velocities in Fig. 8 are now referred to the
inlet flow vector W, and with a streamline integration started from the upstream far
field we will achieve a wall deflection as shown in the last diagram.

3. Design of an adaptive walled cascade test section

Fig. 9 shows a sketch of a new adaptive walled test section for the wind tunnel for
rectilinear cascades (EGG) of the DLR. The design of this test section has been
planned since 1984. The EGG is an intermittent vacuum type tunnel running with
atmospheric air. A more detailed description of this facility is given in reference [1].

The whole adaptive test section for the EGG will be enclosed in a plenum chamber,
see Fig. 9. The test section’s width (blade high) is 1257um. The most important details
are the flexible adaptive top and bottom walls, made of 2mm thick steel plates, which
can be set to desired contours by up to 32 jacks. The jacks are spindle gears driven
by stepper motors. To match the adaptive contours to various types of cascades with
different inlet angles, the flexible walls and associated jacks are mounted to supports
which are adjustable in horizontal and vertical dircctions. These supports and the
rotating disks (which support the actual cascade) will be driven by stepper motors
too. The adaptive walls in the cascade region and downstream of the cascade are only
incompletely drawn in Fig. 9. These parts of the walls must be exchangeable for dif-
ferent cascades with various downstrecam flow fields and exit flow angles. Pressure
taps along the center line of all adaptive walls cnable pressure distribution measure-
ments which can be used as input for wall adaptation methods. More details of this
new test section are reported in reference [2].

There are two main reasons to build such a new cascade test section with adaptive
walls. The first one is to improve the flow quality over all the flow passages. Second,
the side wall boundary layers will be minimized by reducing the distance between the
horizontal contraction of the inlet nozzle and the cascade.
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Ready designed and manufactured are only the flexible adaptive walls, and the asso-
ciated jacks and movable supports (Fig. 9). The upper wall is already mounted onto
a test rack and its electrical instrumentation is completed. This enables the testing of
the jack mechanisms and the stepper motor control systems. A microcomputer
PDP 11/73 is available for the control of the wall adjustment process.

4. Conclusions

The wall adaptation method and the design of a new adaptive walled cascade test
section as shown here are the first steps in the work about “self streamlining” wind
tunnels for rectilinear cascades which is done in the DLR Institute of Experimental
Fluid Mechanics. To go on with this work and to improve the experience in adaptive
walls for cascades further activities are planned for the future:

e To build a simple low speed adaptive cascade test section with one great blade:
The flexible walls and associated jacks and supports designed and manufactured
for the new EGG test section (see section 3) will be used for this test section.
Investigations on this facility will be started in the near future.

e  To develop an adaptation scheme for compressible subsonic cascade flows with
high deflections and one for transonic cascade flow: It may be possible to expand
the scheme which is presented here to subsonic high deflected cascades, but the
application is not correct if supersonic parts of the flow field (with shocks) reach
the adaptive test section walls. So in the transonic casc other adaptation methods
have to be found.
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Fig. 2: For the calculation of wall interferences in a cascade

test—section
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