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ABSTRACT 
Overall cooling effectiveness measurements 

(or metal effectiveness measurements) are 

becoming increasingly used to understand complex 

coupled systems in gas turbine experimental 

research. Unlike traditional techniques in which 

individual boundary conditions are measured in 

isolation and superposed using a thermal model, 

overall cooling effectiveness measurements give 

the final result of a complex coupled system. In 

correctly scaled experiments this allows 

aerothermal performance at near-engine conditions 

to be evaluated directly, and is thus powerful both 

as a research technique and for de-risking engine 

development programmes. The technique is 

particularly useful for evaluating the thermal 

performance of heavily cooled (both internal and 

film) nozzle guide vanes, because of the 

complexity and degree of interaction of the 

underlying boundary conditions. An intrinsic 

limitation of metal effectiveness measurement data 

is that the individual boundary conditions (the 

internal and external heat transfer coefficients, and 

film cooling effectiveness, for example) cannot be 

directly obtained from the final measurement. 

Decoupling of these boundary conditions would 

allow deeper understanding of the systems which 

are the subject of experiments.  

The objective of this paper is to present 

methods to extract the individual underlying 

boundary conditions from data available in typical 

overall cooling effectiveness experimental 

measurements, and to assess the uncertainty 

associated with decoupling techniques. Although 

we reference experimental data from advanced 

facilities for metal effectiveness research 

throughout, much of the analysis is performed 

using a low-order heat transfer model to allow the 

impact of experiment design and measurement 

errors to be clearly separated at each stage of the 

analysis.  

 

NOMENCLATURE 
 

Roman variables 

𝑏 thickness, m 

𝑐 specific heat capacity, J kg
-1 

K
-1 

ℎ 
heat transfer coefficient, W m

-2
 K

-1
 

𝑘 thermal conductivity, W m
-1

 K
-1 

𝑡 time, s  

𝑇 temperature, K 

𝑦  position through the wall, m 

 

Greek variables 

𝛼 thermal diffusivity, m
2
 s

-1
 

𝛽 bias error, K 

𝛿 fraction 

∆ difference 

𝜀 precision error, K 

𝜇 mean 

𝜙 normalised temperature 

𝜎 standard deviation 

𝜌 density, kg m
-3 

𝜏 time constant, s 

 

Subscripts 

e end 

𝑗 wall node index  

meas measured value 

𝑛 number of nodes in the wall 

ptr particular 

s start 

step temperature step change property 

trg target value 

w wall property 

0 total property 

1 external side 

2 internal side 

 

Superscripts 

𝑝 time step index 

 

Abbreviations 

HTC heat transfer coefficient 

IR infrared 

PDF probability density function 

Re Reynolds number 

 

INTRODUCTION 
Research investment in overall cooling 

effectiveness measurement techniques has been 

driven by the desire to accurately assess the overall 

thermal performance of nozzle guide vanes or 

turbine blades at engine-realistic conditions [1-6]. 
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The traditional approach of predicting overall 

thermal performance of such parts from a thermal 

model with boundary conditions obtained from 

separate experiments [7-10] has the disadvantage 

that errors in underlying measurements can 

accumulate in the final result. Additionally, certain 

coupling terms are inherently absent in the 

separated experiments, limiting the accuracy of the 

predicted performance even in the absence of 

experimental errors. Metal effectiveness techniques 

are arguably more suited to overall performance 

assessment than the traditional method. One 

limitation, however, is that underlying boundary 

conditions are not automatically determined from 

the metal effectiveness measurement.  Doing so 

would prevent a number of advantages to both 

researchers and engine designers, but is not an 

entirely straightforward process, not least because 

of the relative complexity of establishing (and even 

describing) confidence limits on the decoupled 

variables. Consider, for example, that the 

relationship—ratios of values, for example—

between a number of variables may be known with 

a considerably higher degree of confidence than the 

value of any single variable, and that this 

information in itself may be of considerable value 

in solving certain types of problem. We refer to 

these complexities in the most general form as the 

decoupling problem. 

 The paper is structured around various 

simplified elemental problems, designed to typify 

certain aspects of the overall problem in such a way 

that the behaviour of the system can be understood. 

These are:  

 

1) Impact of precision and bias errors in one-

dimensional system to a step change in the 

external flow temperature. We use this 

idealized system to understand the impact of 

precision and bias errors in measurements of 

external flow temperature, internal flow 

temperature, and external wall temperature on 

the accuracy with which the underlying 

(extracted) boundary condition values of ℎ1 

and ℎ2 can be determined.  

 

2) Impact of time constant of the temperature 

step in one-dimensional system subject to a 

step change in external flow temperature. We 

use this idealized system to understand the 

impact of experimental design (in terms of 

realistically achievable time constants) on the 

accuracy with which the underlying 

(extracted) boundary condition values of ℎ1 

and ℎ2 can be determined. 

 

3) Practical applications. We consider specific 

examples on how we can extract and use the 

underlying boundary conditions from a metal 

effectiveness experiment.  

MODELLING 
The tool used in this study is a transient low-order 

one-dimensional heat transfer model. As shown in 

figure 1, the model consists of a flat wall subjected 

to a hot external flow of temperature  𝑇01(𝑡) and a 

heat transfer coefficient ℎ1 on its external surface, 

and an internal flow of temperature 𝑇02(t) and a 

heat transfer coefficient ℎ2 on its internal surface. 

 

 
Figure 1: One-dimensional heat transfer model 

𝑇01(𝑡) corresponds to an exponential temperature 

step change of time constant 𝜏step and amplitude 

∆𝑇01 (given by equation 1) and 𝑇02 remains 

constant at ambient temperature over time. The 

wall properties correspond to those of Inconel [11], 

which is a typical material for high pressure turbine 

parts. The properties are listed in table 1 and are 

fixed for the whole analysis.  

 

𝑇01(𝑡) = ∆𝑇01(1 − 𝑒
−𝑡

𝜏step⁄ ) + 𝑇01(0) #(1)  

 
Table 1: Wall properties 

Property Symbol Value 

Wall conductivity 𝑘w 11.7 W m
-1

 K
-1

  

Wall thermal diffusivity  𝛼w 3.13 × 10
-6

 m
2
 s

-1
 

Wall thickness 𝑏w 2.00 × 10
-3

 m 

Wall specific heat 

capacity 
𝑐w 440 J kg

-1
 K

-1 

Wall density 𝜌w 
8.28 × 10

3
  kg m

-

3 

 

The transient convection at the surfaces of the 

wall and the conduction inside the wall are solved 

using finite differences to approximate the temporal 

and spatial derivatives of the 1D heat equation 

(equation 2). The solving methodology used is the 

one proposed by Bergman [12]. The wall is 

spatially discretized into 𝑛 nodes as shown in 

figure 2 and an energy balance is applied to each 

node, which allows to calculate the temperature at 

the next time step (𝑇w,𝑗
𝑝+1

) for any node j. Three 

types of nodes can be distinguished into this spatial 

discretization: exterior surface node (𝑗 = 1), 

interior node (𝑗 = 2, … , 𝑛 − 1) and internal surface 

_____________________________________________________________________________________________________
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node (𝑗 = 𝑛), which can be solved using 

respectively equations 3 to 5. The simulation 

parameters are presented in table 2. The number of 

nodes (𝑛 = 41) was chosen to have a wall 

discretization ∆𝑦 (equation 6) fine enough for the 

simulation’s result to be independent of the 

discretization. The time discretization ∆𝑡 

corresponds to the minimum time discretization 

satisfying the stability conditions of each type of 

nodes in the spatial discretization (external surface 

node, interior node and internal surface node) as 

expressed by equation 7.  

 

 
Figure 2: Discretization of the wall 

1

𝛼w

𝜕𝑇w

𝜕𝑡
=

𝜕2𝑇w

𝜕𝑦2
 (2) 

𝑇w,1
𝑝+1

=
2ℎ1∆𝑡

𝜌w𝑐w∆𝑦
(𝑇01

𝑝
−  𝑇w,1

𝑝
)  +  𝑇w,1

𝑝

+  
2𝛼w∆𝑡

∆𝑦2
(𝑇w,2

𝑝
−  𝑇w,1

𝑝
) 

(3) 

 

𝑇w,𝑗
𝑝+1

 

= 𝑇w,𝑗
𝑝

+
𝑘w∆𝑡

𝜌w𝑐w∆𝑦2
(𝑇w,𝑗−1

𝑝
+ 𝑇w,𝑗+1

𝑝
− 2𝑇w,𝑗

𝑝
) 

(4) 

𝑇w,𝑛
𝑝+1

=
2ℎ2∆𝑡

𝜌w𝑐w∆𝑦
(𝑇02

𝑝
−  𝑇w,𝑛

𝑝
) +  𝑇w,𝑛

𝑝

+  
2𝛼w∆𝑡

∆𝑦2
(𝑇w,𝑛−1

𝑝
−  𝑇w,𝑛

𝑝
) 

(5) 

∆𝑦 = 𝑏w/(𝑛 − 1) (6) 

∆𝑡 = 

min {
𝑘w(∆𝑦)2

2𝛼w(1 + ℎ1∆𝑦)
,
(∆𝑦)2

2𝛼w

,
𝑘w(∆𝑦)2

2𝛼w(1 + ℎ2∆𝑦)
} 

 

(7) 

 

 
Table 2: Simulation parameters 

Parameter Symbol Value 

Number of nodes 𝑛 41 

Wall discretization ∆𝑦 50.0 × 10
-6 

m 

 

METHOD FOR EXTRACTING UNDERLYING 
BOUNDARY CONDITIONS 

Consider the external wall thermal response 

𝑇w1 to a step change (in time) in external flow 

temperature. This is presented in a normalised 

form—𝜙w1 (equation 8)—in figure 3, for the 

boundary conditions listed in table 3 (typical of lab 

experiments in which Re is matched, but in which 

temperature ratio 𝑇01 𝑇02⁄  is lower than the engine 

situation). To extract the underlying boundary 

conditions (ℎ1 and ℎ2) from this external wall 

thermal response, we find the combination of ℎ1 

and ℎ2 that minimizes the average temperature 

difference |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅ (equation 9) between a particular 

prediction 𝑇w1,ptr (made using any given 

combination of ℎ1 and ℎ2, and the 𝑇01(𝑡) and 

𝑇02(𝑡) traces associated with the target external 

wall response) and the target external wall response 

𝑇w1,trg(𝑡) (figure 3). The minimization of |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅ is 

performed using the Nelder-Mead algorithm, which 

is a common derivative-free simplex method to 

find the arguments minimizing the objective 

function |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅(ℎ1, ℎ2). 

 

𝜙 =  
𝑇 − 𝑇02

∆𝑇01

 

 

(8) 

|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅  

=  √
1

(𝑡e − 𝑡s)
∫ (𝑇w1,trg − 𝑇w1,ptr)

2
𝑡e

𝑡s

d𝑡 
(9) 

 
Table 3: Boundary conditions 

Boundary condition Symbol Value 

External HTC ℎ1 3.00 ×10
3
 W m

-2 
K

-1 

Internal HTC ℎ2 6.00 ×10
3
 W m

-2 
K

-1
 

External flow time 

constant 
𝜏step 0.00 s 

Step change amplitude Δ𝑇01 50.0 K 

Internal total 

temperature  
𝑇02(𝑡) 298 K 

 

_____________________________________________________________________________________________________
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Figure 3: Normalised external wall thermal 
response to a perfect step change (in time) in 
external flow temperature 

In evaluating the average temperature 

difference (|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅) between a particular 

combination ℎ1 and ℎ2, and the target combination  

ℎ1 and ℎ2, a choice must be made about the 

averaging window (in time) to use, 𝑡s < 𝑡 < 𝑡e. 

The purpose is to define both the best-fit 

combination ℎ1,  ℎ2 and to quantify an increase in 

error |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅ as we move away from the best-fit 

combination. We therefore choose a period 

𝑡s < 𝑡 < 𝑡e which minimises a threshold contour of 

|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅ on a map of |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅(ℎ1, ℎ2). This is done by 

creating maps of |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅(ℎ1, ℎ2), for every 

combination 𝑡s, 𝑡e, and calculating the area 

enclosed by a threshold contour. The converged 

values 𝑡s, 𝑡e are insensitive to the particular 

threshold error that is chosen (|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0.5, 1, 2, 

etc.), provided that it is in the vicinity of the best-fit 

pair (low absolute threshold). Arbitrarily, a 

threshold of |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅ = 1 K was chosen.  

The converged values of 𝑡s and 𝑡e are 

respectively 0.25 s and 6.00 s for a perfect step 

change in the external flow temperature and the 

final map of |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅(ℎ1, ℎ2) for this particular case 

is shown in figure 4. This time window covers the 

initial part of the rise (0.25 s < t < 3 s, see figure 3), 

which is dominated by ℎ1 and 𝑇01(𝑡), up to the 

approximately steady-state region (3 s < t < 6 s, see 

figure 3), which is also dependent on ℎ2 and 

𝑇02(𝑡). This allows to capture the influence of 

ℎ1, ℎ2, 𝑇01(𝑡) and 𝑇02(𝑡) in  |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅. The reason 

why 𝑡s does not equal 0 s is because the initial 

external wall temperature 𝑇w1(0) is always the 

same for a given 𝑇02(𝑡), which doesn’t change 

during this study. Therefore, ∆𝑇w1 is always 0 at 

𝑇w1(0) and hence it is useless to consider it in 

|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅. Please note that the values of 𝑡s and 𝑡e are 

optimized for each external flow time constant.  

 

 
Figure 4: Average temperature difference  |∆𝑇𝑤1|̅̅ ̅̅ ̅̅ ̅̅ ̅ (in 
K) between wall responses at all combinations 
ℎ1, ℎ2 and the target wall response 𝑇𝑤1(𝑡) for a 
perfect step change in the external flow temperature 

When the target temperature trace 𝑇w1(𝑡) and 

input temperature traces 𝑇01(𝑡) and 𝑇02(𝑡), have no 

bias or precision errors, then the combination of ℎ1 

and ℎ2 corresponding to the target external wall 

response can be extracted without any error. That 

is, |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅(ℎ1, ℎ2) = 0  for the best-fit pair of 

ℎ1, ℎ2.This is marked by the “+” symbol in figure 4. 

The form of figure 4 is interesting. Moving 

away from the best-fit ℎ1-ℎ2 pair (marked by the 

“+” symbol, the gradient of the error (|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅) in 

the ℎ1 direction is approximately 4 times greater 

than in the ℎ2 direction. This is manifested by 

highly elongated ellipse-like contours on the map 

of |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅(ℎ1, ℎ2). Because of the thermal 

resistance and thermal capacity of the wall, the 

initial rise (0.25 s < t < 3 s) of 𝑇w1(𝑡) is more 

strongly influenced by ℎ1 than it is by ℎ2 (and so 

far as the dimensional result is concerned, and for 

the given boundary conditions of temperature step, 

influenced more by 𝑇01(𝑡) than 𝑇02(𝑡), but this 

dependency drops out when results are put in non-

dimensional form). The settled value in the quasi-

steady-state region (3 s < t < 6 s) is essentially a 

function of the ratio ℎ1/ℎ2, and is therefore equally 

influenced by both ℎ1 and ℎ2. The net result is that 

when the entire time window is considered (0.25 s 

< t < 6 s), the error (|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅) is more strongly 

influenced by ℎ1 than by ℎ2. This is one of the 

reasons why we have high aspect ratio quasi-

elliptical (rather than circular) shape of the solution 

region for low error (|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅) thresholds. 

_____________________________________________________________________________________________________
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IMPACT OF PRECISION AND BIAS 
ERRORS 

In laboratory experiments in which metal 

effectiveness is measured, there will be a finite 

measurement uncertainty associated with each of 

the three temporal responses 𝑇w1(𝑡) , 𝑇01(𝑡)  and 

𝑇02(𝑡). The purpose of this section is to consider 

the impact of those errors on the accuracy with 

which boundary conditions ℎ1 and ℎ2 can be 

determined. We do this by considering a 

distribution of temporal responses 𝑇w1(𝑡), 𝑇01(𝑡) 

and 𝑇02(𝑡) that have the same mean as those shown 

in figure 3, but with normally distributed bias and 

precision errors.  

The bias error, 𝛽, is introduced by applying a 

temperature offset to all the temperature traces. The 

value of the bias error for each temperature trace is 

randomly picked from a population that is normally 

distributed with a mean, 𝜇, equal to 0 and a 

standard deviation, 𝜎, equal to the half of the 

desired maximum error amplitude, which is 

expressed as a fraction 𝛿 of the external flow 

temperature step change amplitude ∆𝑇01 (e.g. 𝜎 =
𝛿∆𝑇01/2). Thus, 95% of the normally distributed 

curves lies in a range 𝑇(𝑡) − 𝛿∆𝑇01 < 𝑇(𝑡) <
𝑇(𝑡) + 𝛿∆𝑇01.  

Precision error, 𝜀, is introduced as random 

white noise of a given amplitude superimposed on 

the clean signals. The noise amplitude is expressed 

as a fraction 𝛿 of the external flow temperature step 

change amplitude ∆𝑇01 (e.g. 𝜀 = 𝛿∆𝑇01). 

To quantify the effect of bias and precision 

errors, underlying target temperature signals are 

modified with bias and/or precision errors, creating 

a statistical set of simulated experimental output 

signals 𝑇w1(𝑡), 𝑇01(𝑡) and 𝑇02(𝑡). These signals 

are then used with particular combinations ℎ1 and 

ℎ2 to create a statistical set of particular external 

wall responses, which are compared (in terms of 

|∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅) to the simulated experimental output 

external wall responses. This procedure is 

performed as a Monte Carlo simulation, to 

determine the distribution of best-fit ℎ1-ℎ2 pairs for 

a given statistical set of simulated experimental 

output signals. This statistical set of best-fit ℎ1-ℎ2 

combinations is represented by a 95% confidence 

region in ℎ1-ℎ2  space, for a given simulated 

experiment (defined by underlying signals 𝑇w1(𝑡), 

𝑇01(𝑡) and 𝑇02(𝑡) and by bias and precision error 

ranges, which when combined with the underlying 

signals give rise to a statistical set of output 

simulated experimental signals). 

We now compute the 95% confidence regions 

for the output combinations of ℎ1 and ℎ2 obtained 

from Monte Carlo simulations for a number of 

simulated bias and/or precision errors applied to the 

input temperature signals. All simulations were for 

a perfect step change (𝜏step 𝜏wall⁄  = 0.00) in the 

external flow temperature. To compute the output 

error maps (95% confidence regions) 10,000 

simulations were performed for each combination 

of error amplitudes, to represent the statistical 

distribution of errors around the mean value. The 

resulting ℎ1-ℎ2 pairs are not normally distributed, 

and therefore the 95% confidence region (in ℎ1-ℎ2 

space) is not a perfect ellipse. A somewhat 

arbitrary choice must therefore be made about how 

to define this region. The high density of output ℎ1-

ℎ2 pairs allows a definition based on a minimum-

area to be used. We calculate the shape of the 

region containing 95% of the output pairs, which 

has minimum area, but which is constrained with a 

limit on the minimum allowable radius of 

curvature—i.e. the shape must be smooth. The 

output 95% confidence regions take the form of 

distorted ellipses. The form of these is justified in 

the following sections.  

The results of this analysis are presented in  

figures 5 to 7, which deal in turn with: precision 

error only; bias error only; combined precision and 

bias error. In all three cases, the area enclosed by 

the 95% confidence region grows approximately as 

the fourth power of the error amplitude. 

Accordingly, because the output (ℎ1-ℎ2 pair) 95% 

error contours are approximately self-similar in 

shape, across a range of input (precision; bias; or 

combined precision and bias) error amplitudes, the 

output error in either ℎ1 or ℎ2 grows as 

approximately the second power of the input error 

amplitude.  

For all three error inputs (precision; bias; or 

combined precision and bias) we note that ℎ1 is 

better constrained than ℎ2 across the entire range of 

input error amplitude. Some of the underlying 

reasons for this have been discussed.  

Figure 5 shows results when only a precision 

error is introduced. The shape of the 95% 

confidence regions (in ℎ1-ℎ2) are similar in form to 

the contours of constant |∆𝑇w1|̅̅ ̅̅ ̅̅ ̅̅ ̅ shown in figure 4: 

highly elongated quasi-elliptical shapes, with 

greater range in ℎ2 than in ℎ1, due to greater 

sensitivity of the of output 𝑇w1(𝑡) signals to ℎ1 

than ℎ2 during the transient period of the 

simulation (as opposed to the quasi-steady state 

period).   

Figure 6 shows results when only a bias error 

is introduced. It is notable that the elongated quasi-

elliptical shapes lie along a different major axis to 

those for the simulations with only precision error 

(almost perpendicular trends, in fact). Indeed, the 

individual impact of bias errors on each of the input 

𝑇01(𝑡), 𝑇02(𝑡)  or  𝑇w1(𝑡) traces, are 

characteristically different. The impact on each of 

the three input traces is shown in figure 8. 

With reference to figure 8, when a bias error 

(distribution) is applied to only 𝑇01(𝑡), output ℎ1-

ℎ2 combinations are distributed along the line 

marked “c” in figure 8. Similarly, when a bias error 

_____________________________________________________________________________________________________
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is applied to only 𝑇02(𝑡), ℎ1-ℎ2 solutions lie along 

line “d”. Finally, for bias applied to  𝑇w1(𝑡), 

solutions lie along line “e”. The compound effect 

of normally distributed bias errors (of a given 

magnitude) applied to all three input temperature 

trends, is the quasi-elliptical 95% confidence 

region marked by the solid black line “b”. By 

visualising the three input components (lines of ℎ1-

ℎ2 solutions, for each of 𝑇01(𝑡), 𝑇02(𝑡)  and 

 𝑇w1(𝑡)) we can go some way to checking the final 

form of the confidence region. Justifying the 

rotational orientation of this region is more 

difficult, and requires many individual cases to be 

examined. Particular cases will be considered in 

subsequent sections.  

When the precision and the bias errors are both 

applied to the input temperature signals, their 

effects on the output values of ℎ1 and ℎ2 are 

combined to create a large elliptical confidence 

region as shown in figure 7. This figure shows well 

how measurement errors (bias and precision) can 

lead to large uncertainty in the extracted values of 

ℎ1 and ℎ2. For example, when the precision and 

bias errors are of ± 0.1∆𝑇01 (black contour on 

figure 7), ℎ1 that has a range of 1500 W m
-2

K
-1

 < 

 ℎ1 < 4500 W m
-2 

K
-1

 can deviate by up to 

1500 W m
-2 

K
-1

 from the target ℎ1 value, while ℎ2 

that has a range 2500 W m
-2 

K
-1

 < ℎ2 < 12,500 

W m
-2 

K
-1

 can deviate by up to 6500 W m
-2 

K
-1

 

from the target ℎ2. 

 

 

Figure 9 presents the individual PDFs of ℎ1 

and ℎ2 at the target condition for the 3 error inputs 

(precision; bias; and combined precision and bias) 

of amplitude ± 0.01∆𝑇01. Table 4 lists the 95% 

confidence intervals of the PDFs shown in figure 9. 

Each PDF of ℎ1 was calculated from the ℎ1-ℎ2 

pairs within the band ℎ2,trg ± 0.2% for each error 

type, and vice-versa for the PDFs of ℎ2. Figure 9 

shows that ℎ1 is well constrained when only 

precision errors are considered (± 10 W m
-2 

K
-1

 to 

95% confidence). When only bias errors with the 

same distribution are considered, the 95% 

confidence interval for ℎ1 is approximately twice 

the one when only the precision errors are 

considered. When precision and bias errors are 

combined, the 95% confidence interval for ℎ1 

grows to more than 11 times the length of the 

confidence interval when only precision errors are 

considered. As for ℎ2, when precision errors, bias 

errors or combined errors are considered, the 95% 

confidence intervals are respectively 7, 8 and 43 

times longer than the 95% confidence interval for 

ℎ1 with only precision errors. For this particular 

case (perfect step change in the external flow 

temperature), we see again that ℎ1 is better 

constrained than ℎ2 for a given error type. We also 

see that the precision errors have a lesser impact on 

the uncertainty in a given extracted boundary 

condition than bias errors with the same 

distribution. When both type of errors are 

combined, we observe an important increase in the 

uncertainty of the extracted boundary conditions. 

 

 
 

Figure 5:  95% confidence region for extracted ℎ1 and ℎ2 combinations for a perfect step change in the external 

flow temperature (𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 0.00) with precision errors (𝜀) defined by: (a) target condition (no error); (b) 

𝜀 = ± 0.005ΔT01; (c) ± 0.01ΔT01; (d) ± 0.02ΔT01; (e) ± 0.05ΔT01; (f) ± 0.1ΔT01 
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Figure 6: 95% confidence region for extracted ℎ1 and ℎ2 combinations for a perfect step change in the external 

flow temperature (𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 0.00) with bias errors (𝛽) defined by: (a) target condition (no error); (b) 

𝛽 = ± 0.005ΔT01; (c) ± 0.01ΔT01; (d) ± 0.02ΔT01; (e) ± 0.05ΔT01; (f) ± 0.1ΔT01           

 

 

 

 

 

Figure 7: 95% confidence region for extracted ℎ1 and ℎ2 combinations for a perfect step change in the external 

flow temperature (𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 0.00) with bias and precision errors (𝛽 and 𝜀) defined by: (a) target condition (no 

error); (b) 𝛽 = 𝜀 = ± 0.005ΔT01; (c) ± 0.01ΔT01; (d) ± 0.02ΔT01; (e) ± 0.05ΔT01; (f) ± 0.1ΔT01 
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Figure 8: 95% confidence region for ℎ1 and ℎ2 for  

bias errors 𝛽 = ± 0.01ΔT01 and the line of ℎ1 and ℎ1 
solutions for each temperature signal: (a) target 
condition; (b) 95% confidence region; (c) bias error 
on T01; (d) bias error on T02; (e) bias error on Tw1 

 

Figure 9: Probability density functions at the target 
condition: (a) ℎ1 for 𝜀 = ± 0.01ΔT01; (b) ℎ1 for 

𝛽 = ± 0.01ΔT01; (c) ℎ1 for 𝛽 = 𝜀 = ± 0.01ΔT01; (d) ℎ2 

for 𝜀 = ± 0.01ΔT01; (e) ℎ2 for 𝛽 = ± 0.01ΔT01; (f) ℎ2 

for 𝛽 = 𝜀 = ± 0.01ΔT01; 

Table 4: 95% confidence intervals of ℎ1 and ℎ2 at 
the target condition for different error inputs 

Variable Input error range, K 
95% confidence 

interval, W m
-2 

K
-1

 

ℎ1 𝜀 = ± 0.01∆𝑇01 [2991, 3011] 

ℎ1 𝛽 = ± 0.01∆𝑇01 [2982, 3023] 

ℎ1 𝜀 = 𝛽 =  ± 0.01∆𝑇01 [2883, 3113] 

ℎ2 𝜀 = ± 0.01∆𝑇01 [5936, 6068] 

ℎ2 𝛽 = ± 0.01∆𝑇01 [5919, 6077] 

ℎ2 𝜀 = 𝛽 = ± 0.01∆𝑇01 [5569, 6439] 

IMPACT OF THE TIME CONSTANT OF THE 
EXTERNAL FLOW TEMPERATURE STEP 
To assess the impact of the time constant of the 

external flow temperature step on the 95% 

confidence regions for the output values of ℎ1 and 

ℎ2, the procedure to obtain the confidence regions 

with a perfect step change in external flow 

temperature is repeated with exponential external 

flow temperature steps of different time 

constants 𝜏step. The normalised external flow 

temperature steps are presented in figure 10, where 

their respective time constants are normalised by 

the thermal time constant of the wall. The latter 

corresponds to the time constant of the best 

exponential fit of the external wall thermal 

response to a perfect step change in the external 

flow temperature as shown in figure 3. The Annular 

Sector Heat Transfer facility [2] and the Engine 

Component Aerothermal facility [5], which are two 

facilities performing overall cooling effectiveness 

measurements at the University of Oxford,  can  

respectively achieve external flow temperature 

steps of normalised time constant (𝜏step/𝜏wall) of 

0.25 and 15. 

 

 
Figure 10: Normalised exponential external flow 
temperature steps 𝜙01(𝑡) of various time constants: 

(a) 𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 0.00; (b) 0.25; (c) 0.50; (d) 1.00; (e) 

1.27; (f) 2.00; (g) 5.00; (h) 10.0; (i) 15.0 

Figures 11 and 12 respectively present the 95% 

confidence regions for the output ℎ1-ℎ2 pairs for 

different external flow temperature step time 

constants. For comparison purposes, we only 

consider bias errors of ± 0.01ΔT01 and a 

combination of bias and precision errors of ± 

0.01ΔT01. The confidence regions as a function of 

the external flow temperature step time constant 

with only precision errors considered is not 

presented since the external flow temperature step 

time constant has no impact on the confidence 

region when only a precision error is applied. 
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Figure 11: 95% confidence region for ℎ1 and ℎ2 combinations as a function of the external flow temperature step 

time constant for a bias error 𝛽 = ± 0.01ΔT01 : (a) target condition; (b) 𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 0.00; (c) 0.25; (d) 0.50; (e) 

1.00; (f) 1.27; (g) 2.00; (h) 5.00; (i) 10.0; (j) 15.0 

 
Figure 12: 95% confidence region for ℎ1 and ℎ2 combinations as a function of the external flow temperature step 

time constant for a bias and precision error 𝛽 = 𝜀 = ± 0.01ΔT01 : (a) target condition; (b) 𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 0.00; (c) 

0.25; (d) 0.50; (e) 1.00; (f) 1.27; (g) 2.00; (h) 5.00; (i) 10.0; (j) 15.0 

As presented on both figures 11 and 12, the 

95% confidence region for the output values of ℎ1 

and ℎ2 rotates in the clockwise direction as the 

external flow temperature step time constant 

increases. This rotation of the region of ℎ1 and ℎ2 

solutions is caused by a shift in the required change 

on ℎ2 to best-fit the target external wall response 

with a bias shift as the external flow temperature 

step time constant increases 

To illustrate this, consider figures 13 to 15 

which show the normalised true and a positively 

biased external wall thermal responses (solid and 

dashed black lines respectively) to external flow 

temperature steps of different time constants. We 

can see in figure 13 that when the normalised step 

time constant (𝜏step 𝜏wall⁄ ) is below 1.27, the 

external wall thermal response with only an 

increase in ℎ1 (orange solid line in figure 13) 

allows to fit well the rise of the positively biased 

external wall response but fails to fit the tail of the 

response.  A decrease in ℎ2 (green solid line in 

figure 13) is then required to properly fit the tail of 

the positively biased external wall response. 

Therefore, when the external flow temperature step 

is below a normalised value of 1.27,  ℎ1 must be 

increased and ℎ2 decreased to best-fit a positively 

biased external wall response and vice-versa for a 

negatively biased external wall response. When the 

external flow temperature step normalised time 

constant is above 1.27 as shown in figure 15, both 

ℎ1 and ℎ2 must be increased to best-fit a positively 

biased external wall thermal response and vice-

versa for a negatively biased external wall 

response. When the external flow temperature step 

normalised time constant is 1.27 as shown in figure 

14, only an increase in ℎ1 is required to fit a 

positively biased external wall response and vice-
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versa for a negatively biased external wall 

response. Please note that this particular condition 

where a bias error has no impact on the output 

value of ℎ2 is only valid when the bias error is 

applied only on one of the temperature signals 

(𝑇01(𝑡), 𝑇02(𝑡) or 𝑇w1(𝑡)) at a specific external 

flow temperature step time constant and does not 

occur when bias errors are applied on all 3 signals. 

 

Figure 13: Normalised external wall thermal 
responses as a function of ℎ1 and ℎ2 for 𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  

= 0: (a) 𝜙01(𝑡); (b) 𝜙02(𝑡); (c) 𝜙𝑤1(𝑡), ℎ1, ℎ2 = 3.00, 

6.00 kW m
-2 

K
-1

; (d) 𝜙𝑤1(𝑡) + 0.01, ℎ1, ℎ2 = 3.00, 

6.00 kW m
-2 

K
-1

; (e) 𝜙𝑤1(𝑡), ℎ1, ℎ2 = 3.14, 6.00 kW 

m
-2 

K
-1

; (f) 𝜙𝑤1(𝑡), ℎ1, ℎ2 = 3.14, 5.58  kW m
-2 

K
-1

 

 
Figure 14: Normalised external wall thermal 
response as a function of ℎ1 and ℎ2 for 

𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 1.27: (a) 𝜙01(𝑡); (b) 𝜙02(𝑡); (c) 𝜙𝑤1(𝑡), 

ℎ1, ℎ2 = 3.00, 6.00 kW m
-2 

K
-1

; (d) 𝜙𝑤1(𝑡) + 0.01, ℎ1, 

ℎ2 = 3.00, 6.00 kW m
-2 

K
-1

; (e) 𝜙𝑤1(𝑡), ℎ1, ℎ2 = 3.39, 
6.00 kW m

-2 
K

-1 

 
Figure 15: Normalised external wall thermal 
response as a function of ℎ1 and ℎ2 for 𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 

2: (a) 𝜙01(𝑡); (b) 𝜙02(𝑡); (c) 𝜙𝑤1(𝑡), ℎ1, ℎ2 = 3.00, 

6.00 kW m
-2 

K
-1

 (d) 𝜙𝑤1(𝑡) + 0.01, ℎ1, ℎ2  = 3.00, 

6.00 kW m
-2 

K
-1

; (e) 𝜙𝑤1(𝑡), ℎ1, ℎ2 = 3.39, 6.00 kW 

m
-2 

K
-1

; (f) 𝜙𝑤1(𝑡), ℎ1, ℎ2 = 3.39, 6.60 kW m
-2 

K
-1 

Note that when the confidence regions become 

elongated due to an increasing flow step time 

constant, particular ℎ1-ℎ2 combinations become 

poorly constrained due to a large 95% confidence 

region. However, the relationship between the two 

variables becomes highly constrained due to the 

elongated and thin shape of the confidence region. 

This means that if we know one variable (ℎ1 or ℎ2) 

when the external flow temperature step time 

constant is large (𝜏step 𝜏wall⁄  ≥ 5), we could 

determine the other variable more accurately. This 

will be shown in the next section. 

 

 
Figure 16: Normalised temperature traces with a 
bias and precision error 𝛽 = 𝜀 = ± 0.01ΔT01 with a 
normalised external flow temperature step time 

constant 𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 5 
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PRACTICAL APPLICATIONS 
Consider a metal effectiveness experiment in 

which the transient normalised temperature 

traces 𝜙01(𝑡), 𝜙02(𝑡) and 𝜙w1(𝑡) are as shown in 

figure 16.  

In this example, the normalised external flow 

temperature time constant (𝜏step 𝜏wall⁄ ) is 5, and 

the bias and precision errors are of amplitude ± 

0.01Δ𝑇01.  

The following subsections provide practical 

examples in which underlying boundary conditions 

are extracted from transient temperature traces like 

those in figure 16. 

 

Example 1: both 𝒉𝟏 and 𝒉𝟐 are unknown 
If both ℎ1 and ℎ2 are unknown, we can obtain 

a 95% confidence region of possible combinations 

of ℎ1 and ℎ2 (figure 17) that satisfy the 

measurements  𝑇01(𝑡), 𝑇02(𝑡) and 𝑇w1(𝑡). The 

most likely combination of ℎ1 and ℎ2, and the size 

of the 95% confidence region (in ℎ1-ℎ2  space) 

depend on both the bias and the precision errors in 

the measurements of  𝑇01(𝑡), 𝑇02(𝑡) and 𝑇w1(𝑡) 

and on the time constant of the external flow 

temperature step.  

 

 
Figure 17: ℎ1 and ℎ2 combinations for bias and 

precision errors 𝛽 = 𝜀 = ± 0.01ΔT01 and for 

𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 5: (a) most likely combination of ℎ1 and 

ℎ2; (b) 95% confidence region for  ℎ1 and ℎ2. 

The most likely output combination of ℎ1 and 

ℎ2 that satisfies the measurements 𝑇01(𝑡), 𝑇02(𝑡) 

and 𝑇w1(𝑡) is ℎ1 = 3006 W m
-2 

K
-1

, ℎ2 = 6026 W 

m
-2 

K
-1

. This is marked by “+” in figure 17. The 

simulation input values (the underlying values in 

the numerical experiment) were ℎ1 = 3000 W m
-2 

K
-1

, ℎ2 = 6000 W m
-2 

K
-1

. As previously 

mentioned, in a simulation with no measurement 

uncertainty, the underlying ℎ1 and ℎ2 combination 

would be exactly recovered. Interestingly, the 

impact of finite measurement uncertainty is not 

only a statistical distribution of possible ℎ1 and ℎ2 

pairs (the 95% confidence region in  ℎ1-ℎ2 space) 

but also a shift (albeit very small) in the most likely 

value. That is, we are unable to exactly recover the 

most likely solution.  

Considering the 95% confidence region, we 

see that for this particular case the range of ℎ2 

(5200 W m
-2 

K
-1

 <  ℎ2 < 7000 W m
-2 

K
-1

) is more 

than two times the range of ℎ1  (2600 W m
-2 

K
-1

 < 

ℎ1 < 3400 W m
-2 

K
-1

). As explained in the previous 

sections, the external thermal response 𝑇w1(𝑡) is 

more sensitive to changes in ℎ1 than to changes in 

ℎ2 for certain external flow temperature step time 

constant, which explains the smaller ℎ1 range. As 

for the elongated shape of the ellipse, this one 

comes from the decreasing sensitivity of 𝑇w1(𝑡) to 

changes on ℎ1 and ℎ2 at higher step time constant, 

which requires larger changes on ℎ1 and ℎ2  to 

best-fit the true 𝑇w1(𝑡) signal with a bias shift. 

 

Example 2: determination of 𝒉𝟐 when 𝒉𝟏 is 
known and vice-versa    

If ℎ1 or ℎ2 is known from another experiment, 

then it is possible to determine the other parameter 

by intersecting the measured parameter and its error 

band with the 95% confidence region obtained 

from the metal effectiveness experiment to more 

accurately determine the unknown parameter. For 

instance, ℎ1 could be measured to 3000 W m
-2 

K
-1

 

(the actual input ℎ1 value in the simulation) from a 

very accurate experiment with an error band of ± 

2.5% (2925 W m
-2 

K
-1

 < ℎ1 < 3075 W m
-2 

K
-1

). In 

figure 18 the 95% confidence region of figure 17 is 

intersected with the measured ℎ1 and its error band. 

Using the probability density function (PDF) of the 

measured ℎ1, we can randomly and normally 

sample combinations of ℎ1 and ℎ2 within the 

intersection of the 95% confidence region with the 

error band of the measured ℎ1. The output PDF of 

the sampled ℎ2 provides the confidence we have 

in ℎ2. For this particular case, we find that the most 

likely value of ℎ2 out of its PDF is 6003 W m
-2 

K
-1

 

and its 95% confidence interval is 5801 W m
-2 

K
-1

 

<  ℎ2 < 6205 W m
-2 

K
-1

. The value of ℎ2 is 

therefore more accurately extracted than when both 

ℎ1 and ℎ2 are unknown, and the length of its 

confidence interval is reduced by 4.5 times 

compared to the confidence interval of ℎ2 when 

both ℎ1 and ℎ2 are unknown.  

The same procedure could be repeated with a 

known ℎ2 to determine ℎ1 with more confidence. 

For instance, this approach would be of interest 

when trying to determine the external heat transfer 

(ℎ1) of a deteriorated gas turbine vane or blade due 

to service. If the internal heat transfer coefficient 

(ℎ2) is known from the original design since the 

internal cooling passages do not deteriorate with 

service, it would be possible to intersect the known 
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ℎ2 with the 95% confidence region of possible 

combinations of ℎ1 and ℎ2 obtained from the metal 

effectiveness experiment performed with the 

deteriorated parts. This would allow to measure 

with greater confidence the impact of in-service 

surface deterioration (oxidation, erosion and 

deposition) on ℎ1. 

 

 
Figure 18: Intersection of the measured ℎ1 and its 

error band with the 95% confidence region for ℎ1 

and ℎ2 when the bias and precision errors are 𝛽 = 𝜖 
= ± 0.01ΔT01 and with a normalised external flow 
temperature step time constant 𝜏𝑠𝑡𝑒𝑝 𝜏𝑤𝑎𝑙𝑙⁄  = 5: (a) 

95% confidence region; (b) measured value of ℎ1; 

(c) uncertainty band on ℎ1; (d) PDF of measured ℎ1; 

(e) PDF of output ℎ2 

Example 3: accuracy with which a design 
change can be implemented 

If the steady state normalised external wall 

temperature 𝜙w1 of 0.5 in figure 16 is found to be 

too high or too low, then a designer might like to 

take the external wall temperature to another target 

value 𝜙w1,trg  by changing the heat transfer 

coefficients. 

One simple way to reach  𝜙w1,trg  would be to 

apply a change on only ℎ1 (Δℎ1) or only on ℎ2 

(Δℎ2), which are calculated using equations 10 and 

11. The measured point (ℎ1,meas, ℎ2,meas) 

corresponds to the most likely combination of 

ℎ1 and ℎ2 inside the 95% confidence region 

(marked by “+” in figure 17). 

 

∆ℎ1 = ℎ1,trg − ℎ1,meas (10) 

  

∆ℎ2 = ℎ2,trg − ℎ2,meas (11) 

 

To assess the accuracy of the design change (also 

known as the extrapolation problem) we apply a 

change (Δℎ1 or Δℎ2) on all the ℎ1-ℎ2 combinations 

within the 95% confidence region. Since 

Δℎ1 and Δℎ2 are fixed values and that the true 

values of ℎ1 and ℎ2 can be any combinations inside 

the confidence region, this means that there will be 

an uncertainty in the resulting 𝜙w1,trg .  

Figure 19 presents the PDF of 𝜙w1,meas (no 

HTC change applied) and the PDF of 

𝜙w1,trg depending on its mean value and if it is 

reached with a change on only ℎ1 (Δℎ1) or only on 

ℎ2 (Δℎ2) from the measured condition. Table 5 

summarises the 95% confidence intervals of 

𝜙w1,meas and all the possible 𝜙w1,trg . Figure 19 

shows well that the uncertainty of 𝜙w1,trg  is 

dependent on its mean value. For instance, the 95% 

confidence interval of 𝜙w1,trg = 0.46 obtained with 

∆ℎ2 is 35% larger than the 95% confidence interval 

of 𝜙w1,meas . On the other hand, the confidence 

interval of 𝜙w1,trg = 0.54 obtained with ∆ℎ2 is 62% 

smaller than the confidence interval of  𝜙w1,meas . 

It can also be noticed that the uncertainty in 

𝜙w1,trg is also dependant on the path taken to 

perform the design change (Δℎ1 or Δℎ2). For 

instance, the confidence interval of 𝜙w1,trg = 0.54 

obtained with ∆ℎ2 is 38% smaller than the 

confidence interval of 𝜙w1,trg = 0.54 obtained with 

∆ℎ1.  

 
Table 5: 95% confidence intervals on the 
normalised external wall temperatures  

Variable 
Mean 

value 

Design 

change 

95% confidence 

interval 

𝜙w1,meas 0.50 none [0.4876, 0.5124] 

𝜙w1,trg 0.46 ∆ℎ1 [0.4447, 0.4753] 

𝜙w1,trg 0.46 ∆ℎ2 [0.4432, 0.4768] 

𝜙w1,trg 0.54 ∆ℎ1 [0.5325, 0.5476] 

𝜙w1,trg 0.54 ∆ℎ2 [0.5353, 0.5447] 

 

 
Figure 19: Probability density functions: (a) 

 𝜙𝑤1,𝑚𝑒𝑎𝑠 = 0.5; (b)  𝜙𝑤1,𝑡𝑟𝑔 = 0.46 obtained with ∆ℎ1 

(c)  𝜙𝑤1,𝑡𝑟𝑔 = 0.46 obtained with ∆ℎ2; (d)  𝜙𝑤1,𝑡𝑟𝑔 = 

0.54 obtained with ∆ℎ1; (e)  𝜙𝑤1,𝑡𝑟𝑔 = 0.54 obtained 

with ∆ℎ2 
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Figure 19 shows that even though there is a 

large uncertainty in the extracted values of ℎ1 and 

ℎ2 (large 95% confidence region), it is still possible 

to accurately achieve design changes, which is the 

case for 𝜙w1,trg = 0.54 obtained with ∆ℎ2. 

Figure 20 allows to understand the dependence 

of the uncertainty in 𝜙w1,trg on its value and on the 

path taken to reach the target condition from the 

measured point. When a design change (Δℎ1 or 

Δℎ2) is applied on the measured condition, we 

essentially apply a shift on the whole distribution of 

possible ℎ1 and ℎ2 combinations in the ℎ1-ℎ2 

plane. If the shifted distribution is well aligned with 

the lines of constant  𝜙w1 , then  𝜙w1,trg  will be 

well constrained and vice-versa. For instance, since 

the shifted distribution of ℎ1 and ℎ2 combinations 

to reach  𝜙w1,trg = 0.54 with Δℎ2 is well aligned 

with the line of constant  𝜙w1 = 0.54, there is very 

little variability in the output distribution 

of 𝜙w1,trg . On the opposite, the shifted distribution 

of  ℎ1 and ℎ2 combinations to reach  𝜙w1,trg = 0.46 

with  Δℎ2 is not well aligned with the line 𝜙w1 = 

0.46 and goes across other lines of constant 𝜙w1. 

As a result, there is more uncertainty in the output 

 𝜙w1,trg for this particular design change. 

 

 
Figure 20: ℎ1-ℎ2 map: (a) lines of constant  
𝜙𝑤1; (b) Measured confidence region for 

combinations of ℎ1 and ℎ2; (c) Shifted confidence 

region for combinations of ℎ1 and ℎ2 to reach 

𝜙𝑤1,𝑡𝑟𝑔 = 0.46 with ∆ℎ1; (d) 𝜙𝑤1,𝑡𝑟𝑔 = 0.46 with ∆ℎ2; 

(e) 𝜙𝑤1,𝑡𝑟𝑔 = 0.54 with ∆ℎ1; (f) 𝜙𝑤1,𝑡𝑟𝑔 = 0.54 with 

∆ℎ2; 

CONCLUSIONS 
The purpose of this paper was to present 

methods to extract the individual underlying 

boundary conditions from transient metal 

effectiveness experimental data, and to describe the 

drivers—in terms, for example, of the precision and 

bias errors in the directly measured parameters—

for the resulting uncertainty in these derived 

quantities. To explain aspects of this relatively 

complex problem, we considered the simplest 

possible system: a one-dimensional heat transfer 

problem with measured internal and external gas 

temperatures (with errors), and measured external 

wall temperature (with errors), and unknown 

internal and external heat transfer coefficients (the 

boundary conditions, which were the subject of the 

study). We showed the following:   

i) The uncertainty in the individual underlying 

values of ℎ1 and ℎ2 grows quadratically with 

the amplitude of the precision and bias errors 

applied on the three measured temperature 

signals.  

ii) When the time constant of the external flow 

temperature step is small in comparison to the 

time constant of the wall (𝜏step 𝜏wall⁄  ≤ 2.00), 

possible ℎ1 and ℎ2 combinations are tightly 

constrained (small 95% confidence region in 

ℎ1-ℎ2 space) when measurement errors are 

low (𝛽, 𝜀 ≤ 0.02 ∆𝑇01). 

iii) When the time constant of the external flow 

temperature step is larger in comparison to the 

time constant of the wall (𝜏step 𝜏wall⁄  > 2.00), 

possible ℎ1 and ℎ2 combinations are relatively 

poorly constrained even if the measurement 

errors are low (𝛽, 𝜀 ≤ 0.02 ∆𝑇01). 

iv) Interestingly, in some cases (iii) where ℎ1 and 

ℎ2 combinations are relatively poorly 

constrained, the 95% confidence region can 

be thin and elongated in ℎ1-ℎ2 space. Thus, 

although the uncertainty associated with 

picking a particular ℎ1-ℎ2 pair might be high, 

the relationship between ℎ1 and ℎ2 within a 

pair is relatively low.   

v) A consequence of (iv) is that if either ℎ1 or ℎ2 

is known from another experiment, the 

remaining parameter can be determined with 

higher accuracy than if both ℎ1 or ℎ2 are 

unknown.  

vi) If a particular metal effectiveness result has 

been achieved in an experiment, and a design 

change is required to either increase or 

decrease the metal effectiveness to a new 

target value, then for relatively small changes, 

the new target metal effectiveness can be 

achieved with an accuracy comparable to the 

original metal effectiveness result, even in 

cases where there is significant uncertainty in 

individual underlying parameters ℎ1, ℎ2.  

 

Increasing sophistication in metal effectiveness 

experiments has allowed very detailed assessment 

of particular cooling system designs. We believe 

that using analysis of the sort described in this 

paper —with further developments — it  may be 

possible to go some way to decoupling underlying 

boundary conditions from these experiments, 

providing deeper insights and understanding of 

complex coupled systems, making the metal 

effectiveness technique even more powerful than it 

currently is. 
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