XXIV Biennial Symposium on Measurement Techniques in Turbomachinery

Prague, 29-31 August 2018

Unsteady swirl distortion characteristics in S-duct aero-engine intakes

D. Gil-Prieto, <u>P. Zachos</u>, D. MacManus, G. McLelland Propulsion Engineering Centre

www.cranfield.ac.uk

- Introduction
- Research rationale
- Experimental facility and methods
- Flow analysis
 - Mean flow & unsteadiness
 - o Spectral analysis
 - Coherent structure identification via unsteady POD
 - Distortion descriptor unsteady analysis and spectra
- Conclusions and overview

Complex intake experimental facility

- 1: Seeding chamber
- 2: Intake
- 3: Flow measurement
- **4:** Vortex generator section
- 5: Straight section
- 6: Inlet traverse station
- 7: S-duct
- 8: Measurement plane
- 9: Optical working section
- 10: Suction system
- 11: PIV camera
- 12: Camera traverse system
- **13:** Laser
- 14: Support system

Cranfield complex intake test facility

		. Inlet Mach	Inlet Re _p
D _i -37 mm	D _i = 121.6 mm		
	$A_{out} / A_{in} = 1.52$	0.27	5.9e+5
	H / D _i = 1.34	0.45	9.9e+5
	L / D _i = 5.0	0.6	13.2e+5
D _i ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	D _i = 121.6 mm		
	$A_{out} / A_{in} = 1.52$	0.27	6.01e+5
	H / D _i = 2.44	0.45	10.05e+5
	L / D _i = 4.95	0.6	13.8e+5

- □ 150mm AIP diameter
- No rotating parts

Camera setup

- □ 3C-2D Time Resolved Stereo PIV
- x2 High speed cameras
- □ 16,600 fps max frame rate at full resolution
- □ 1MP 800 x 1280 pixel sensor resolution
- □ typical final spatial resolution 2.5 x 2.5 mm
- □ ~ 4,000 3D velocity vectors across the plane

Laser setup

- High speed laser
- 10 mJ / pulse at 10 kHz (100 Watt)

Temporal resolution

- Acquisition up to 8kHz velocity field
- □ Fully synchronous across the AIP

XXIV Biennial Symposium on Measurement Techniques in Turbomachinery, Prague 29-31 August 2018

16

- Critical to fan response (aerodynamic / aeromechanic)
- All observations also valid at low $M_{ref}=0.27 \rightarrow$ Inlet Mach second order impact
- Main frequencies St<1.2 \rightarrow within fan response (St_{crit}~ 0.9 5.4) \rightarrow likely to impact fan's operability margin

POD spectral analysis

SAE swirl distortion descriptors

- Evaluated at rings and rakes
- Swirl Intensity (SI) quantifies the swirl levels
- Swirl Pairs (SP) and Swirl Directivity (SD) characterize the swirl pattern

Descriptor maps – Probability Density Functions

Swirl distortion unsteady analysis and spectra

Descriptor spectra - SD

- Main frequencies up to $St = 1.2 \rightarrow$ within fan's critical range.
- Lateral switching mechanism \rightarrow primary unsteadiness source.
- Vertical switching mechanism also important → driven by shear layer unsteadiness → more broadband.
- Fundamental frequencies reflected on SD spectrogram.
- Potential impact on fan stability?
- Inlet Mach \rightarrow second order impact on unsteady swirl.

@cranfielduni@cranfielduni(cranfielduni

© Cranfield University